possibly be scavenged by the solvent or undergo radical recombination reactions whereas the $\left[\mathrm{Pt}^{11} \mathrm{Pt}^{111}(\mathrm{pop})_{4} \mathrm{X}\right]^{4-}$ species may undergo disproportionation to give $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}{ }^{-}\right.$ (pop) $\left.{ }_{4} X_{2}\right]^{4-}$ as suggested by previous work. ${ }^{20,21,24}$ From Table II, the ϕ_{r} values for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ depend on the nature of axial ligands and decrease with $\mathrm{X}_{2}=\left(\mathrm{CH}_{3}\right)(\mathrm{I})>(\mathrm{SCN})_{2}>\mathrm{I}_{2}>\mathrm{Im}_{2}$ $>\mathrm{Cl}_{2}>\mathrm{Br}_{2}$. With the exception of $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{Cl}_{2}\right]^{4}$, this trend parallels the corresponding decrease in $\mathrm{Pt}-\mathrm{Pt}$ bond distances [X_{2}, $d(\mathrm{Pt}-\mathrm{Pt})$ in angstroms: $\left(\mathrm{CH}_{3}\right)(\mathrm{I}), 2.78(1) ;(\mathrm{SCN})_{2}, 2.760(1) ;$ $\mathrm{I}_{2}, 2.754$ (1); $\mathrm{Im}_{2}, 2.745$ (1); $\mathrm{Br}_{2}, 2.723$ (4); $\mathrm{Cl}_{2}, 2.695$ (1)]. F^{6-28}
Such a correlation of ϕ_{r} values with $d(\mathrm{Pt}-\mathrm{Pt})$ bond distances is not unreasonable given the fact that the photoreaction

$$
\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-} \xrightarrow{h \nu}\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}
$$

involves breakage of the metal-metal bond. The reactive $\left[\mathrm{Pt}^{11} \mathrm{Pt}^{\mathrm{II}}(\mathrm{pop})_{4} \mathrm{X}\right]^{4-}$ intermediate and $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ products with $\left(\mathrm{d}_{\sigma}\right)^{2}\left(\mathrm{~d}_{\sigma}{ }^{*}\right)^{1}$ and $\left(\mathrm{d}_{\sigma}\right)^{2}\left(\mathrm{~d}_{\sigma}{ }^{*}\right)^{2}$ configurations, respectively, should have weaker $\mathrm{Pt}-\mathrm{Pt}$ bond strengths than the starting $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ species $\left[\left(\mathrm{d}_{\sigma}\right)^{2}\right]$. In fact, the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right]^{4}$ complex, having the highest ϕ_{r} value ${ }^{29}$ (Table II), has a Pt-Pt bond distance (2.782

[^0](1) \AA) close to that found in the partially oxidized linear-chain $\left[\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Br}\right]^{4-}\right]$ compound (2.793 (1) \AA). ${ }^{25}$

Conclusion

The efficient and stoichiometric photoconversion of $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.)_{4} \mathrm{X}_{2}\right]^{4-}$ to $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ in methanol makes $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4^{-}}$ distinctly different from other binuclear $\mathrm{d}^{8}-\mathrm{d}^{8}$ complexes such as $\left[\mathrm{Rh}_{2}(\mathrm{TMB})_{4}\right]^{2+}\left(\mathrm{TMB}=2,4\right.$-dimethyl-2,5-disocyanohexane). ${ }^{3}$ The high ϕ_{r} value observed for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right]^{4-}$ suggests the potential usefulness of $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ in catalyzing photochemical $\mathrm{C}-\mathrm{X}(\mathrm{X}=$ halogen $)$ bond-breakage reactions. Even though $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ is stable in aqueous solution, the complex nature of the photochemistry of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ in water precludes it to be a good solvent system for photocatalysis work.

Acknowledgment. Research at Hong Kong University (C.M.C., W.-M.L.) was supported by the Committee of Conference and Research Grants of the University of Hong Kong. W.-M.L. acknowledges the receipt of a studentship, administered by the Croucher Foundation.

Registry No. $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{Br}_{2}\right]^{4}, 87374-25-2 ;\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{Cl}_{2}{ }^{4}{ }^{4}, 87355-$ $26-8 ;\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Im}_{2}\right]^{4}, 114944-21-7 ;\left[\mathrm{Pt}_{2}\left(\mathrm{pop}_{4}\right)_{4} \mathrm{I}_{2}\right]^{-4}, 87355-25-7 ;\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.{ }_{4}(\mathrm{SCN})_{2}\right]^{4-}, 102133-43-7 ;\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right]^{4-}, 114928-99-3$; $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4}, 80011-25-2$.
Supplementary Material Available: Figures S1-S3 show spectral changes of photoreactions (3 pages). Ordering information is given on any current masthead page.
(29) The high ϕ_{r} value for $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right]^{4-}$ may also due to the fact that the reductively eliminated product, $\mathrm{CH}_{3} \mathrm{I}$, is nonoxidizing.

Aprotic Conjugate Addition of Allyllithium Reagents Bearing Polar Groups to Cyclic Enones. 1. 3-Alkylallyl Systems

Malcolm R. Binns, Richard K. Haynes,* Andrew G. Katsifis, Paul A. Schober, and Simone C. Vonwiller
Contribution from the Department of Organic Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia. Received September 11, 1987

Abstract

The conjugate addition of lithiated (E) - and (Z)-oct-2-enyl sulfoxides and phosphine oxides, but-2-enyl sulfoxides, phosphine oxides and phosphonates, and 3,3 -dimethylallyl and allyl sulfoxides to cyclic enones has been examined. The E and Z carbanions react in highly diastereoselective fashion with five-membered cyclic enones to deliver respectively syn and anti vinylic sulfoxides, phosphine oxides, and phosphonates. Hexamethylphosphoric triamide has no regiochemical influence on these reactions. The regiochemical and stereochemical outcomes of these reactions are rationalized in terms of planar lithiated reagents in which Li^{+}is bound to oxygen attached to sulfur or phosphorus of the polar group and a 10 -membered "trans-decalyl"or "trans-fused chair-chair"-like transition-state model in which the lithiated reagent adopts an endo orientation over one face of the enone such that for the E reagent, the 3 -alkyl group is pseudoequatorial, and for the Z, pseudoaxial.

The aprotic conjugate addition of lithiated stabilized carbanions to conjugated enones is a well-known reaction that has received considerable attention, from both exploratory mechanistic ${ }^{1-4}$ and

[^1]synthetic ${ }^{5}$ viewpoints. In many cases, the propensity of such carbanions to undergo carbonyl addition with conjugated enones

[^2]can be suppressed by conducting the reaction in the presence of hexamethylphosphoric triamide (HMPA). ${ }^{2}$ In those cases where the carbanion is prochiral, or chiral, diastereomeric mixtures of conjugate addition products are generally obtained from prochiral enones without significant diastereoselection. Indeed, it is only in specialized cases involving enolates and acyclic enones that appreciable diastereoselection takes place. ${ }^{3,4}$

The reaction of stabilized allylic carbanions with conjugated enones is complicated by the ambident reactivity of the carbanion. Nevertheless, although lithiated allylic phenyl sulfides react by carbonyl addition with cyclopentenones to deliver regioisomeric mixtures of vinylic and allylic sulfides, ${ }^{6,9}$ the presence of HMPA induces a kinetically controlled conjugate addition to take place with predominant or exclusive formation of allylic sulfides arising from reaction through $\mathrm{Cl}(\mathrm{C} \alpha)$ of the carbanion. ${ }^{6-8} \quad$ Thus, from (E-octenyl phenyl sulfide (1) (Chart I) and 4 -tert-butoxy-cyclopent-2-enone (17) is obtained the allylic sulfide 2 as a $1: 1$ mixture of diastereomers in good yield. ${ }^{7}$ The regiochemistry has been exploited in highly convergent syntheses of prostaglandin precursors. ${ }^{9}$ During attempts to shorten the synthesis through use of lithiated allylic sulfoxides, we discovered that these reagents do not react in the same way as lithiated allylic sulfides with cyclopentenones. ${ }^{10}$ Thus, lithiated allyl phenyl sulfoxide undergoes kinetically controlled conjugate addition to cyclopent-2-enone to give the vinylic sulfoxide 3 arising from reaction through C 3 ($\mathrm{C} \gamma$) of the carbanion. This reaction, also independently reported by Pivnitskii and co-workers, ${ }^{8}$ does not require HMPA. The anomaly becomes even more pronounced in light of the reactivity of lithiated allylic sulfones. Under the same conditions, these are reported to react in the same way as lithiated allylic sulfides in that HMPA causes kinetic conjugate addition to give allylic sulfones as mixtures of diastereomers. "

Intriguing as the regiochemical anomaly associated with the reactivity of the lithiated sulfoxides vis-à-vis the reactivities of the lithiated sulfides and sulfones is, of greater importance is the subsequent finding that the reactions involving lithiated allylic sulfoxides bearing alkyl groups at $\mathrm{C} 3(\mathrm{C} \gamma)$ and cyclopentenones are also highly diastereoselective; this adds enormously to the significance of these reactions. The diastereoselection is remarkable in view of the s-trans nature of the enone and because appreciable diastereoselection is not normally associated with aprotic conjugate addition reactions of this kind. In order to probe the causes of both the regiochemistry and the diastereoselectivity
(3) Yamaguchi, M.; Tsukamoto, M.; Tanaka, S.; Hirao, I. Tetrahedron Lett. 1984, 25, 5661. Yamaguchi, M.; Hasebe, K.; Tanaka, S.; Minami, T. Tetrahedron Lett. 1986, 27, 959
(4) Kpegba, K.; Metzner, P.; Rakotonirina, R. Tetrahedron Lett. 1986, 27, 1505. Enders, D.; Papadopoulos, K.; Rendenbach, B. E. M.; Appel, R.; Knoch, F. Tetrahedron Letl. 1986, 27, 3491 . Oare, D. A.; Heathoock, C. H. Tetrahedron Lett. 1986, 27, 6169.
(5) Ziegler, F. E.; Fang, J. M. J. Org. Chem. 1981, 46, 825. Nokami, J.; Ono, T.; Kurihara, H.; Wakabayashi, S. Chem. Lett. 1982, 607 . Vedejs, E.; Nader, B. J. Org. Chem. 1982, 47, 3193 . Semmelhack, M. F.; Keller, L.; Sato, T.; Spiess, E. J. Org. Chem. 1982, 47, 4382. Ziegler, F. E.; Fang, J. M.; Tam, C. C. J. Am. Chem. Soc. 1982, 104, 7174. Ziegler, F. E.; Mencel, J. J. Tetrahedron Lett. 1983, 24, 1859. Rosen T.; Oppolzer, W.; Pitteloud, R.; Bernardinelli, G.; Baettig, K. Tetrahedron Lett. 1983, 24, 5975. Tachner, M. J.; Thomas, J. A.; Heathcock, C. H. J. Org. Chem. 1985, 50, 1190. Jones, D. N.; Peel, M. R. J. Chem. Soc., Chem. Commun. 1986, 216. Liu, H.-J.; Wynn, H. Can. J. Chem. 1986, 64, 658. Enders, D.; Rendenbach, B. E. M. Tetrahedron 1986, 42, 2235. St. Laurent, D. R.; Paquette, L. A. J. Org Chem. 1986, 51, 3861
(6) Binns, M. R.; Haynes, R. K.; Houston, T. L.; Jackson, W. R. Tetrahedron Lett. 1980, 21, 573. Binns, M. R.; Haynes, R. K. J. Org. Chem. 1981, 46, 3790. Haynes, R. K.; Schober, P. A.; Binns, M. R. Aust. J. Chem. 1987, 40, 1223.
(7) Binns, M. R.; Haynes, R. K. Aust. J. Chem. 1987, 40, 937.
(8) Vasil'eva, L., L.; Mel'nikova, V. I.; Gainullina, E. T.; Pivnitskii, K. K. Zh. Org. Khim. 1980, 16, 2618. Vasil'eva, L. L.; Mel'nikova, V. I.; Gainullina E. T.; Pivnitskii, K. K. J. Org. Chem. USSR (Engl. Transl.) 1983, 19, 835.
(9) Binns, M. R.; Haynes, R. K.; Lambert, D. E.; Schober, P. A. Tetrahedron Lett. 1985, 26, 3385. Haynes, R. K.; Lambert, D. E.; Schober, P. A.; Turner, S. G. Aust. J. Chem. 1987, 40, 1211. Haynes, R. K.; Schober, P. A. Aust. J. Chem. 1987, 40, 1249.
(10) Binns, M. R., Haynes, R. K.; Houston, T. L.; Jackson, W. R. Aust. J. Chem. 1981, 34, 2456.
(11) Hirama, M. Tetrahedron Lett. 1981, 22, 1905.

Chart I

of these reactions, and to establish their scope and limitations, we examined the reactions of a number of lithiated allylic sulfoxides. During the course of the work, we also found that lithiated allylic phosphine oxides and phosphonates react in similar fashion. We now describe in detail the results of the study of these reactions, which as far as we are aware, have no close analogy in the literature. ${ }^{12}$
(12) For preliminary communications of this work, see: Binns, M. R.; Haynes, R. K.; Katsifis, A. G.; Schober, P. A.; Vonwiller, S. C. Tetrahedron Lett. 1985, 26, 1585 . Binns, M. R.; Chai, O. L.; Haynes, R. K.; Katsifis, A. G.; Schober, P. A.; Vonwiller, S. C. Tetrahedron Lett. 1985, 26, 1569.

Chart II

$30 \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{\mathbf{u}}$
$32 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{11}$
$33 \mathrm{R}=\mathrm{Pb}, \mathrm{R}^{\prime}=\mathrm{Me}$

$36 \mathbf{R}=\mathrm{Pb}, \quad \mathbf{R}^{\prime}=\mathrm{Me}$
$38 \mathrm{R}=t-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{Me}$
$41 \mathrm{R}=\mathrm{Ph}, \quad \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$42 \mathrm{R}=\mathrm{Ph}, \quad \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSiMe}_{2} t-\mathrm{Bu}$

$31 \mathrm{R}=\mathrm{Pb}, \mathrm{R}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{\mathrm{u}}$
$34 \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Me}$

$37 \mathrm{R}=\mathrm{Pb}, \mathrm{R}^{\prime}=\mathrm{Me}$

44

$47 \mathrm{n}=2, \mathrm{R}=\mathrm{Me}$
$49 \mathrm{n}=2, \mathrm{R}=\mathrm{H}$
$51 \mathrm{n}=3, \mathrm{R}=\mathrm{Me}$

$\mathrm{R}=\mathrm{Pb}$
$40 \mathrm{R}=t-\mathrm{Bu}$

43

45

50

52

Results and Discussion

Addition of the enones 17-24 to the lithiated reagents derived from the allylic sulfoxides 4-13, phosphine oxides 14 and 15 , and phosphonates 16 in THF and quenching the reaction mixture shortly thereafter gave the products 25-62 (Charts II and III). Overall yields and ratios of the products and geometric purity of the starting allylic sulfoxide, phosphine oxide, or phosphonate are summarized if Table I. Ratios of diastereomeric products were provided by $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectroscopic analyses of product mixtures. That the diastereochemical purity of the individual products could be assayed by NMR spectroscopy was checked by reducing the sulfoxides 25 and 29 with tributylphosphine-iodine

Chart III

53

$55 \mathrm{R}=\mathrm{Pb}$
$57 \mathrm{R}=\mathrm{OEt}$

$59 n=2$
$60 \mathrm{n}=3$

$63 \mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{\prime}=\mathrm{H}$
$64 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$

66

54

$61 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{POPh}_{2}$
$62 \mathrm{R}=\mathrm{POPh}_{2}, \mathrm{R}^{\prime}=\mathrm{Me}$

65

67
in diethyl ether in the presence of HMPA ${ }^{13}$ to the corresponding vinylic sulfides 63 and 64 and then reoxidizing these to sulfoxides with m-chloroperbenzoic acid. In both cases, the formation of diastereomeric sulfoxides was clearly indicated by the NMR spectra of the crude products; the diastereomeric sulfoxides 29 and 65 were also separated and characterized. We have described in detail elsewhere how the relative stereochemistries of the syn and anti ${ }^{14}$ products 25 and 26 from the sulfoxide 4 and the enone

[^3]Table I. Yields of Conjugate and Carbonyl Addition Products from Lithiated Sulfoxides, Phosphine Oxides, and Phosphonates

entry	enone	lithiated reagent	$\begin{aligned} & E: Z \\ & \text { ratio } \end{aligned}$			product ratio	overall yield, ${ }^{\text {a }}$ \%
Sulfoxides							
1	17	4	90:10	25	26	90:10	79
2		4	17:83	25	26	21:79	70
3		6	80:20	27	28	80:20	64
4		8		29			80
5	18	4	85:15	30	31	83:17	83
6		4	17:83	30	31	20:80	80
7		5	92:8	32	b	92:8 ${ }^{\text {b }}$	63
8		6	76:24	33	34	75:25	71
9		8		35			82
10	19	6	80:20	36	37	80:20	72
11							$79\left(-10^{\circ} \mathrm{C}\right)$
12		7	94:6	38	b	93:7 ${ }^{\text {b }}$	$71\left(-10^{\circ} \mathrm{C}\right)$
13							$80\left(\mathrm{LiBr},-10^{\circ} \mathrm{C}\right)^{\text {c }}$
14		8		39	d	$80: 20^{d}$	85
15							$72\left(\mathrm{Et}_{2} \mathrm{O},-40^{\circ} \mathrm{C}\right)^{e}$
16		9		40			57
17							$80\left(-20^{\circ} \mathrm{C}\right)$
18		12	85:15	41	b	85:15 ${ }^{\text {b }}$	90
19		13	85:15	42	b	$85: 15^{b}$	73
20	20	10		43	d	83:17 ${ }^{\text {d }}$	71
21	21	8		44	g		83
22		10		45			71
23							59 (HMPA) ${ }^{\prime}$
24	22	8		46	47^{h}	58:42	79
25						65:35	$85(\mathrm{LiBr})^{c}$
26						60:40	77 (HMPA) ${ }^{\prime}$
27		11		$48{ }^{i}$		62:38	59
				49 ${ }^{\text {n }}$			10
				50^{i}		55:45	20
28	23	8		51^{h}			77
29	24	11		52^{8}			53
			Phosphine Oxides, Phosphonates				
30	17	14	95:5	53	54	95:5	81
31		14	17:83	53	54	18:82	83
32	19	15	>95.5:0.5	55			80
33		15	5:95	55	56	5:95	81
34		16	78:22	57	58	77:23	81
35		16	13:87	57	58	13:87	74
36	22	15	>95.5:0.5	59			73
37							85 (LiBr)
38	23	15	>95.5:0.5	60^{i}		1:1 ${ }^{\text {j }}$	27
				$61{ }^{i}$		60:40	18.5
				62^{i}		80:20	42

${ }^{a} \mathrm{At}-70^{\circ} \mathrm{C}$ except where indicated. Yields refer to isolated, chromatographically pure products and are not adjusted to take account of small amounts of unchanged reactants also isolated. ${ }^{b}$ Minor product not characterized; assumed to be anti compound. ${ }^{c}$ Solution of enone containing LiBr ($1-2$ equiv) in THF added to lithiated reagent. ${ }^{d}$ Minor product not characterized; assumed to differ in relative configuration at C3. ${ }^{\boldsymbol{e}}$ In diethyl ether as solvent. ${ }^{f}$ Lithiated reagent generated in presence of HMPA (1-2 equiv). ${ }^{8}$ Other, unstable products also formed. ${ }^{k}$ Mixture of four diastereomers. ${ }^{i}$ Mixture of two diastereomers. ${ }^{j}$ Diastereomer ratios.

17 have been established through use of high-field ${ }^{1} \mathrm{H}$ NMR spectroscopy and an X-ray crystallographic study of a crystalline adduct formally derived from the syn product $25 .{ }^{16}$ The relative configuration at sulfur is provided by the X-ray study. Although the relative configuration at sulfur in the products from the (Z)-allylic sulfoxides was not determined, this must be the same as that in the products from the (E)-allylic sulfoxides, as is discussed below. X-ray data obtained from the product of another, more highly substituted (\boldsymbol{Z})-allylic sulfoxide described in the following paper confirm this.

From Table I, it is evident that the relative configuration at the allylic carbon atom in the products is dependent upon the geometry of the starting allylic compound: that is, (E)-allylic systems deliver syn products, and (Z)-allylic systems deliver anti

[^4]products. When the allyl system bears an alkyl group at C3, then diastereoselection, within the limits of experimental error, ${ }^{17}$ is virtually complete. Diastereoselection is poorest in the case of the allyl and dimethylallyl systems (entries 14, 20), except when the enone bears a methyl group at C3 (entry 22) or an alkoxy group at C4 (entry 4), or if the sulfoxide bears a bulky nonallylic group (entry 16). The reaction is also tolerant of moderate functionality in the lithiated sulfoxide (entries 18, 19). That products 41 and 42 obtained from these sulfoxides possess the same relative stereochemistry was shown by converting the latter into 41 by means of fluoride ion. Thus, the presence of a free hydroxyl group in the allylic sulfoxide, providing that it is distant from the allylic system, does not affect the stereochemical outcome of the reaction. If, however, there is a hydroxyl in the nonallylic group attached to sulfur as in compounds 66 and 67 , then regio- and stereoselection is destroyed. ${ }^{12.18}$ When reaction through C3 of

[^5]

Figure 1. Trans-decalyl- or trans-fused chair-chair-like representation of the transition state of the reaction of lithiated (E)-octenyl sulfoxide 4 with 4 -tert-butoxycyclopent-2-enone (17).
the enone is prevented, then carbonyl addition intervenes (entries 21,29). This also takes place as the ring size of the enone increases (entries 24, 27-29, 38). The presence of HMPA has a somewhat deleterious effect upon yields (entry 23); in such cases increased amounts of starting materials are also isolated from the reaction mixture. The reagent does not suppress the formation of carbonyl addition products (entry 26). On the other hand, addition of enone in THF containing lithium bromide to the lithiated sulfoxide or phosphine oxide increases the yields of the conjugate addition products (entries $13,25,37$). Reactions may be run at higher temperatures and also succeed in diethyl ether as solvent (entry 15).

In developing a model that is to account for these features, we consider first the structures of the lithiated carbanions, definitive data on which have not been recorded. ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR data of lithiated benzylic sulfoxides ${ }^{19}$ and phosphonates ${ }^{20}$ have been interpreted in terms of a planar carbanion, which in the case of the sulfoxide is ion-paired with the lithium counterion, presumably through the oxygen atom. It is significant that HMPA is unable to disrupt this ion pairing. ${ }^{21}$ On the other hand, lithiated benzylic sulfides are pyramidal; disruption of the ion pair occurs in the presence of HMPA. ${ }^{19}$ The hybridization state and general influence of coordinating solvents on ion pairing of sulfone carbanions appear to be intermediate between those of the sulfoxide and sulfide, although the effect of HMPA is similar to that which it exerts upon the ion-paired sulfide. ${ }^{19}$ It is pertinent to note that X-ray crystal structure studies of lithiated alkyl phenyl sulfones indicate planar systems comparable to a lithium enolate in which one of the $\mathrm{S}-\mathrm{O}$ bonds lies approximately in the nodal plane of the π-bond. ${ }^{23}$ On the basis of this evidence and the following discussion, we represent the structure of the lithiated (E)-octenyl phenyl sulfoxide $\left(4-\mathrm{Li}^{+}\right)$as an essentially planar system in which lithium is bound to oxygen and the $\mathrm{C}-\mathrm{S}$ bond possesses doublebond character. $\mathrm{Cl}-\mathrm{C} 2$ has single bond, and $\mathrm{C} 2-\mathrm{C} 3$, double-bond character. The $\mathrm{S}-\mathrm{O}$ and $\mathrm{Cl}-\mathrm{C} 2$ bonds are approximately antiperiplanar; that is, the former lies approximately in the nodal plane of the π-bond, a situation corresponding in part to that in lithiated benzylic sulfones. ${ }^{23,24}$ There is thus a pyramidal arrangement of substituents about the sulfur atom, and so asymmetry is not lost through planarity at Cl .

The formation of the product 25 can be accounted for by assuming that in the transition state the planar lithiated sulfoxide
(18) Haynes, R. K.; Katsifis, A. G.; Chai, O. L., unpublished results.
(19) Chaissaing, G.; Marquet, A. Tetrahedron 1978, 34, 1399.
(20) Bottin-Strzalko, T.; Seyden-Penne, J. J. Org. Chem. 1978, 43, 4346.
(21) The P-O dipole of phosphine oxides is generally greater than that of the $\mathrm{S}-\mathrm{O}$ dipole of sulfoxides, thus making phosphine oxides the more effective lithium-complexing agent. However, the magnitude of the S-O dipole can be increased considerably when electron-donating substituents are adjacent to the S-O group. ${ }^{22}$ Hence, the presence of an adjacent carbanionic site is expected to increase the magnitude of the dipole and, therefore, the complexing ability of the S-O group far beyond that observed in neutral sulfoxides and phosphine oxides. Thus, HMPA will have little effect on the ion pairs of a sulfoxide carbanion.
(22) Gurka, D.; Taft, R. W. J. Am. Chem. Soc. 1969, 91, 4794. Szmant, H. H. In Sulfur in Organic and Inorganic Chemistry; Senning, A., Ed.; Marcell Dekker: New York, 1971; Vol. 1 p 142.
(23) Gais, H.-J.; Lindner, H. J.; Vollhardt, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 859. See also: Boche, G.; Marsch, M.; Harms, K.; Sheldrick, G. M. Angew. Chem., Int. Ed. Engl. 1985, 24, 573.
(24) The structures of lithiated sulfides are quite different. Lithiated (E)-but-2-enyl tert-butyl sulfide is shown through X-ray and computational studies to have lithium η^{3} bound to the allyl system: Seebach, D.; Maetzke, T.; Haynes, R. K., Paddon Row, M. N.; Wong, S. S. Helv. Chim. Acta 1988, 71, 299.

Figure 2. Trans-decalyl- or trans-fused chair-chair-like (a) and cis-fused boat-boat-like (b) representations of transition states of the reaction of lithiated (S_{s})-sulfoxide 8 with cyclopentenone (19).
lies over one face of the enone such that it adopts an endo orientation with respect to the enone. Chelation of the lithium by the carbonyl oxygen may then be seen to serve as the regiochemical "anchor" which causes the sulfoxide group to lie over the carbonyl group. The carbanion is constrained to react through C3. The transition state itself is described as "trans-decalyl"-like or "trans-fused chair-chair"-like, as represented in Figure 1. The sulfoxide lone pair is pseudoaxial, and the phenyl is pseudoequatorial and projects away from the enone. The pentyl group as a consequence of the double-bond character of the $\mathrm{C} 2-\mathrm{C} 3$ bond in the lithiated sulfoxide must be pseudoequatorial in the TS. Although planar, the lithiated sulfoxide is possessed of diastereotopic faces, and it is because of both the configuration at sulfur and the endo orientation in the TS that reaction can only occur through the one face, as depicted. The chelation also accounts for the regiochemical differences in the reactivities of the lithiated sulfoxides vis-à-vis the sulfides as has also been noted by Pivnitskii and co-workers. ${ }^{8}$ It also accounts for the anomalous reactivity of the lithiated reagents derived from the sulfoxides 68 and 69 , where internal coordination of lithium with alkoxide is likely. As a combination of orbital and charge control appears to be important in determining whether carbanions will undergo conjugate addition reactions to enones, ${ }^{25}$ it is clear that the planar nature of the carbanion and its endo orientation with respect to the enone allow maximum orbital overlap between the reactants to operate. The HOMO of the lithiated sulfoxide, which can be considered as a heteropentadienyl system (cf. $4-\mathrm{Li}^{+}$), interacts with the LUMO of the enone through the AOs at Cl and C 3 . Although this shall be discussed in more detail elsewhere in conjunction with MO calculations on the lithiated sulfoxides, we point out that orbital interactions between C 1 of the reactants will confer the "decalyl"-like character of the TS.

The model adequately accounts for the features of the reactions as outlined above. Diastereoselection arises as a consequence of π-face selection by the lithiated sulfoxide. Where the enone is enantiofacial, as in enones $\mathbf{1 8 - 2 1}$, the individual enantiomers of a lithiated racemic sulfoxide will react at opposite faces of the enone. When the enone bears a group that renders the faces diastereotopic, as in 4-tert-butoxycyclopent-2-enone (17), face selectivity is imposed by that group, and so individual enantiomers of the sulfoxide now undergo enantioselective reactions with the individual enantiomers of the enone. Given the face selectivity of the reaction, it is evident that the relative configuration at sulfur in the transition states involving the (Z)-sulfoxides must be the same as that in the (E)-sulfoxides. For the (E)-sulfoxide, the alkyl group at C3 is pseudoequatorial, whereas for the (Z)-sulfoxide, this is pseudoaxial. The increase in the amount of carbonyl addition associated with increasing ring size of the enone is attributed to enhanced diaxial interactions between H 2 of the allyl system and the methylene protons at C5 or C6 of the enone destabilizing this transition state. ${ }^{26}$ The presence of substituents that impose steric restraints to bond formation through C3 in either reactant will encourage the reaction to take place through Cl of the enone. Although within the context of the model (cf. Figure 1) there appears to be regiochemical significance in the formation of allylic sulfoxides arising from carbonyl addition (entries 24-27),
(25) Deschamps, B.; Lefour, J.-M.; Loupy, A.; Seyden-Penne, J. Nouv. J. Chim. 1980, 4, 121, and references cited therein.
(26) Alternatively, this may reflect an attenuation in reactivity at C 3 of larger ring enones arising through decreased orbital overlap between the carbonyl and conjugated alkene.
the lack of diastereoselection ${ }^{27}$ implies that it does not necessarily proceed through extended transition states related to that of Figure 1 ; it must also involve the conventional size-membered transition states characteristic of the reaction of allylic nucleophiles with carbonyl compounds. ${ }^{28}$ In this regard, the presence of two methyl groups at C3 of the allyl system, as in 8 , does not suppress the formation of a vinylic sulfoxide, in this case $\mathbf{4 6}$, arising by conjugate addition to cyclohexenone, although only an allylic sulfoxide (47) is obtained from carbonyl addition. In the absence of the methyl groups, as in 11, a vinylic sulfoxide (50) in addition to an allylic sulfoxide (49) is obtained from carbonyl addition (entries 24, 27). As HMPA will not solvate Li^{+}when this is associated with negatively charged sulfoxide, ${ }^{21}$ regiochemistry is unaffected by the reagent. The lower yields of products obtained in its presence are associated with an increase in recovery of unreacted starting material; proton transfer from the enone to the lithiated sulfoxide is presumably enhanced by the presence of HMPA. The role of lithium bromide in enhancing the yields of the conjugate addition products may be associated with suppression of proton transfer. ${ }^{29}$

The lower stereoselectivity associated with the reactions of the allyl and dimethylallyl sulfoxides (entries 14,20 , Table I) is intriguing and is best understood by considering the reactions of a single enantiomer of the starting racemic sulfoxide. The (S_{s}) enantiomer of the sulfoxide 8 will deliver the ($3 S, S_{S}$) enantiomer of the major product 39 through the normal TS involving the si face of the enone (Figure 2). The minor product obtained from the $\left(S_{S}\right)$-sulfoxide clearly must possess the same configuration at sulfur; it thus can only differ in configuration at C 3 within the cyclopentanone nucleus. It must as a consequence arise through reaction at the $r e$ face of the starting enone. The one extended transition state-described as "cis-fused boat-boat"-like-that can be drawn to accommodate these stereochemical requirements is given in Figure 2. Although obviously disfavored with respect to the first TS of Figure $2,{ }^{30}$ further examples of reactions proceeding through this TS are known and are given in the accompanying paper. It now becomes clear that this "unwanted" reaction pathway involving the allyl and dimethylallyl sulfoxides can be blocked through the attachment of groups at either C3 (entry 22) or C 4 of the enone (entry 4$)^{31}$ or through use of a larger nonallylic substituent-tert-butyl-attached to sulfur (entry 16).

The model of the TS as encapsulated in Figure 1 clearly indicates that lithiated carbanions which have allylic geometry and polar groups sterically and electronically related to sulfoxide should also undergo conjugate addition. It was on this basis that an examination of the reactions of lithiated allylic phosphine oxides and phosphonates was undertaken. The carbanions must be structurally similar to the sulfoxides and are assumed to be planar; the oxygen atom is predicted to lie approximately within the nodal plane of the π-bond, and the spatial arrangement of the two nonallylic substituents is as for the lone-pair and nonallylic substituent in the lithiated sulfoxide. An obvious analogy may be
(27) As is clearly apparent from $400-\mathrm{MHz}$ spectra recorded on crude reaction mixtures directly after workup, allylic sulfoxides arising from carbonyl addition are obtained as mixtures of four diastereomers. In all cases, the ratio of diastereomers changes with time, presumably through equilibration via the sulfoxide-sulfenate rearrangement.
(28) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555. Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: Orlando, FL, 1984; Vol. 3, Part B, pp 154-159, and references cited therein.
(29) Ahlbrecht, H.; Kompter, H.-M. Synthesis 1983, 645. We initially anticipated that complexation of the enone by "external" Li^{+}would encourage carbonyl addition by disrupting chelation and enhancing the charge-control effects considered to be important in carbonyl addition. ${ }^{2 s}$ It seems that complexation enhances the electrophilic nature of the enone so that proton transfer is suppressed in favor of conjugate addition. Presumably "displacement" of enone-complexed Li^{+}by sulfoxide-bound Li^{+}occurs in the TS.
(30) Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New York, 1962; pp 204-208.
(31) In 4-tert-butoxycyclopent-2-enone, the tert-butoxy group ensures that H 4 is approximately pseudoaxial. ${ }^{7,16}$ There will thus be a more rigid and crowded environment about C 4 than in cyclopent-2-enone; this will destabilize a "cis-fused boat-boat"-like TS of Figure 2 in favor of the normal "trans-fused chair-chair"-like TS in reactions involving this enone.
drawn with the structure of the sulfone discussed above. ${ }^{23}$ The presence of two nonallylic substituents attached to phosphorus renders the carbanions somewhat more hindered than the sulfoxides, and it may be for this reason that carbonyl addition through C 1 is less favored than in the case of the sulfoxide (entries 24-28, 36, 37).

Regardless of the actual mechanism by which these reactions proceed, the model of the mechanism we have presented is conceptually simple, easily visualized, and consistently accounts for the regiochemical and stereochemical features of the reactions. Although the regiospecific formation of the vinylic products is synthetically useful, ${ }^{32}$ the great value of the reactions obviously lies in the virtually quantitative translation of the E or Z geometry of the starting allylic system into syn or anti compounds that possess a level of functionality suitable for abundant synthetic exploitation. The reactions also appear to be unique in that face selectivity is brought about through a structural feature inherent in the carbanion, and so they do not rely on the usual devices required to bring about face selection in conjugate addition-an exogenous group shielding one face of the enone, or a discrete chiral complexing agent associated with the carbanion. Further, the conjugate addition produces a lithium enolate whose reaction with a suitable electrophile enables further functionality to be added in a stereocontrolled fashion. ${ }^{33}$

Finally, it needs to be pointed out that if these reactions are to be successfully applied to enantiomerically pure phosphine oxides and phosphonates, then these reagents have to bear nonallylic substituents attached to phosphorus that have substantially different steric requirements. There has to be a clear preference for one substituent to adopt a pseudoequatorial, the other a pseudoaxial, disposition in the TS, otherwise face selectivity will be lost and mixtures of diastereomers will result. ${ }^{34}$ In this regard, the optimum substrates are obviously sulfoxides, but unfortunately the difficulties associated with the preparation and stability of optically active 3-alkylallylic sulfoxides preclude their general use in this regard. However, optically active allyl bornyl sulfoxides derived from camphor ${ }^{35}$ and $(+)-(R)$-allyl tolyl sulfoxide ${ }^{36}$ have been successfully used. In the latter case, the structures of the products have been established by correlation with a cyclopentanone of known absolute configuration. The stereochemical outcome of these reactions are as predicted by the model.

Experimental Section

General Aspects. The general experimental conditions have been described previously. ${ }^{7}$ Cyclopent-2-enone, ${ }^{37}$ 4-tert-butoxycyclopent-2enone, ${ }^{38}$ but-2-en-4-olide (γ-crotonolactone), ${ }^{39}$ 2,2-dimethyl-3(2 H)furanone, ${ }^{40}$ and 4,4a,5,6,7,8-hexahydro-4a-methyl-2(3H)-naphthalene ${ }^{41}$
(32) The regiochemical aspect of these reactions has been exploited in the case of vinylic sulfoxides obtained from allylic sulfoxides bearing an alkyl group at Cl: Vasil'eva, L. L.; Mel'nikova, V. I.; Pivnitskii, K. K. J. Gen. Chem. USSR (Engl. Transl.) 1982, 52, 2346. Nokami, T.; Ono, A.; Iwao, A.; Wakabayshi, S. Bull. Chem. Soc. Jpn. 1982, 55, 3043. Vasil'eva, L. L.; Mel'nikova, V. I.; Pivnitski,, K. K. J. Org. Chem. USSR (Engl. Transl.) 1984, 20, 628. Nokami, J.; Ono, T.; Wakabayashi, S.; Hazato, A.; Kurozumi, S. Tetrahedron Lett. 1985, 26, 1985.
(33) Haynes, R. K.; Vonwiller, S. C. J. Chem. Soc., Chem. Commun. 1987, 92 . Haynes, R. K.; Katsifis, A. G. J. Chem. Soc., Chem. Commun 1987, 340.
(34) This is verified in the very recent work of Hua and co-workers involving conjugate additions with lithiated chiral allyl oxazaphospholidine oxides: Hua, D. H.; Chan-Yu-King, R.; McKie, J. A.; Myer, L. J. Am. Chem Soc. 1987, 109, 5026.
(35) Binns, M. R.; Goodridge, R. J.; Haynes, R. K.; Ridley, D. D. Tet rahedron Lett. 1985, 26, 6381.
(36) Hua, D. H.; Sinai-Zingde, G.; Venkataraman, S. J. Am. Chem. Soc. 1985, 107, 4088. Hua, D. H. J. Am. Chem. Soc. 1986, 108, 3835. Hua, D H.; Venkataraman, S.; Coulter, M. J.; Sinai-Zingde, G. J. Org. Chem. 1987 , 52, 719 The preparation of compounds 43 and 45 in enantiomerically enriched forms were reported by Hua and co-workers.
(37) Alder, K.; Flock, F. H. Chem. Ber. 1956, 89, 1732.
(38) Haubenstock, H.; Mennitt, P. G.; Butler, P. E. J. Org. Chem. 1970, 35, 3728. Schwartz, J. A.; Loots, M. J.; Kosugi, H. J. Am. Chem. Soc. 1980 102, 3728.
(39) Price, C. C.; Judge, J. M., Organic Syntheses; Wiley: New York, 1941; Collect. Vol. 1, p 254. Takano, S.; Ogasawara, K. Synthesis 1974, 42.
(40) Margaretha, P. Tetrahedron Lett. 1971, 4891.
were prepared according to literature procedures. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , unless indicated otherwise.

Preparation of (1) Allylic Sulfoxides. These were prepared by oxidation of the corresponding sulfides with m-chloroperoxybenzoic acid (1.2 equiv) in dichloromethane at $-70^{\circ} \mathrm{C}$ followed by removal of the m chlorobenzoic acid by filtration and evaporation of solvent from the filtrate under reduced pressure at $0^{\circ} \mathrm{C}$. The residue was taken into diethyl ether, and the ether solution was washed with aqueous potassium carbonate and brine, dried, and evaporated under reduced pressure at 0 ${ }^{\circ} \mathrm{C}$. The residue was submitted to flash chromatography with ethyl acetate-light petroleum to give the sulfoxide as a colorless oil. $E: Z$ ratios were established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, except where indicated.

1-(Phenylsulfinyl)oct-2-ene (4). 1-(Phenylthio)oct-2-ene (E / Z $90: 10)^{42}$ was converted into the sulfoxide $4(E / Z 90: 10) .{ }^{43}$ Distillation of the product at $155-160^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$ caused the amount of Z isomer to increase to 20%. 1-(Phenylthio)oct-2-ene ($Z / E 88: 12)^{42}$ gave the sulfoxide 4 ($Z / E 83: 17$), which was stored at $-20^{\circ} \mathrm{C}$ and used within 24 h of its preparation. After 48 h at room temperature, the mixture contained 50% of the (E) isomer: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.7-1.0(3 \mathrm{H}$, m, H8), 1.0-1.5 (6 H, m, H5, H6, H7), 1.6-2.2 (2 H, m, H4), 3.59 (2 $\mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{Hl}), 5.25(1 \mathrm{H}, \mathrm{dt}, J=10,7.5 \mathrm{~Hz}, \mathrm{H} 3), 5.72(1 \mathrm{H}, \mathrm{dt}$, $J=10,8 \mathrm{~Hz}, \mathrm{H} 2)$.

1-(Methylsulfinyl)oct-2-ene (5). (E)-1-(Methylthio)oct-2-ene ${ }^{51}$ gave the sulfoxide 5 ($E / Z 92: 8$): IR (neat) $\nu_{\max } 3450$ (br), 2940 (br), 1740 (m), 1660 (w), 1470 (m), $1380(\mathrm{w}), 1300(\mathrm{~m}), 1290(\mathrm{~m}), 1270(\mathrm{~m}), 1330$ (w), 1110 (w), 1060 (w), 980 (s), 840 (w), 760 (w), 740 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.77-1.00(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.15-1.59(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$, H6, H7), 1.97-2.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$), $2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SOCH}_{3}\right), 3.41$ ($2 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}, \mathrm{H} 1), 5.49(1 \mathrm{H}, \mathrm{dtt}, J=15.0,7.0,1.2 \mathrm{~Hz}, \mathrm{H} 2), 5.84(1 \mathrm{H}$, $\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, \mathrm{H} 3)$; MS $m / e 174\left(\mathrm{M}^{+},<1\right), 139(3), 81(10), 70$ (10), 69 (100), 67 (15), 64 (10), 63 (12), 57 (18), 55 (85), 53 (32); HRMS calcd for [$\left.\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OS}-\mathrm{O}\right]$ 158.1078, found 158.1073.

1-(Phenyisulfinyl) but-2-ene (6). Freshly prepared, crude 1 -bromo-but-2-ene ${ }^{44}[E / Z 95: 5$, according to GC analysis (10% Carbowax 20 M on Gas Chrom Q, $1.46 \mathrm{~m} \times 2 \mathrm{~mm}$ i.d. column, column temperature 62 ${ }^{\circ} \mathrm{C}, \mathrm{N}_{2}$ flow rate $25 \mathrm{~mL} \mathrm{~min}^{-1}$)] was converted by a standard method into 1 -(phenylthio)but-2-ene ($E / Z 95: 5$), bp $130^{\circ} \mathrm{C}(0.7 \mathrm{~mm}$; Kugelrohr) [lit. $\left.{ }^{45} \mathrm{bp} 69.6-70.0^{\circ} \mathrm{C}(1.3 \mathrm{~mm})\right]$, and thence into the sulfoxide $6[E / Z$ 82:18, according to HPLC (1:3 ethyl acetate-light petroleum, Brownlee column, SI $100,5 \mu \mathrm{~m}$, flow rate $1 \mathrm{~mL} / \mathrm{min}$)]. Distillation at $120-123$ ${ }^{\circ} \mathrm{C}(0.5 \mathrm{~mm}$; Kugelrohr) caused the $E: Z$ ratio to change to $3: 1$. The spectroscopic properties of this compound were in agreement with those reported for a $3: 1$ mixture of the isomers. ${ }^{46}$

1-[(1,1-Dimethylethyl) sulfinyl]but-2-ene (7). Sodium 2-methyl-propane-2-thiolate (91 mmol) in methanol (100 mL) at $0^{\circ} \mathrm{C}$ was treated dropwise with (E)-1-bromobut-2-ene ($12.96 \mathrm{~g}, 96 \mathrm{mmol}$). The resultant solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then poured into water and extracted with ether. The combined extracts were washed with aqueous potassium carbonate and brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent left a pale yellow oil $(12.74 \mathrm{~g})$, which was distilled to yield the sulfide as a colorless liquid $[E / Z 94: 6$, according to GC analysis (SGE fused silica Superox $0.150 \mathrm{~m} \times 0.33 \mathrm{~mm}$ i.d. capillary column, column temperature $80^{\circ} \mathrm{C}$, He pressure 90 kPa): $11.44 \mathrm{~g}, 87 \%$; bp 115 ${ }^{\circ} \mathrm{C}\left(18 \mathrm{~mm}\right.$; IR (neat) $v_{\text {max }} 2960(\mathrm{br} \mathrm{s}), 2860(\mathrm{sh}), 1450(\mathrm{~m}), 1410(\mathrm{w})$, $1190(\mathrm{~m}), 980(\mathrm{~m}), 940(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 1.31(9 \mathrm{H}, \mathrm{s}$, $t-\mathrm{Bu}), 1.70(3 \mathrm{H}, \mathrm{dm}, J=4.9 \mathrm{~Hz}, \mathrm{H} 4), 3.16(2 \mathrm{H}, \mathrm{dm}, J=4.8 \mathrm{~Hz}, \mathrm{Hl})$, 5.41-5.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3$); MS $m / z 144$ ($\mathrm{M}^{+}, 21$), 88 (24), 57 (100), 55 (59), 54 (22); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~S}$ 144.0973, found 144.0976. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~S}: \mathrm{C}, 66.6 ; \mathrm{H}, 11.2$. Found: $\mathrm{C}, 66.3 ; \mathrm{H}, 11.1$. From the sulfide was obtained after flash chromatography with $20: 80$

[^6]ethyl acetate-light petroleum the sulfoxide $7(E / Z 94: 6)$: IR (neat) $\nu_{\text {max }}$ 2963 (s), 2920 (sh, s), 1474 (m), 1462 (m), 1439 (sh), 1365 (m), 1184 (m), $1038(\mathrm{~s}), 968(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.26(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, 1.71-1.82 (3 H, m, H4), 2.97-3.39 (2 H, m, H1), 5.59 (1 H, ddd, $J=$ $15.3,6.5,5.7 \mathrm{~Hz}, \mathrm{H} 2), 5.83(1 \mathrm{H}, \mathrm{dq}, J=15.3,5.7 \mathrm{~Hz}, \mathrm{H} 3)$; MS (CI) $m / e 161(\mathrm{M}+1,23), 145(3), 133(9), 105(34), 87(32), 57$ (53), 43 (58), 41 (73), 31 (61), 30 (25), 29 (100), 28 (62). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 59.95 ; \mathrm{H}, 10.1$. Found: C, 59.6; H, 10.2.

3-Methyl-1-(phenylsulfinyl)but-2-ene (8). 1-(Phenylthio)-3-methyl-but-2-ene ${ }^{47}$ gave after flash chromatography with $40: 60$ ethyl acetatelight petroleum the sulfoxide 8 as a pale yellow oil: bp $172-175^{\circ} \mathrm{C}(0.1$ mm; Kugelrohr) IR (neat) $\nu_{\text {max }} 2970$ (s), 2930 (s) 1580 (w), 1440 (s), $1380(\mathrm{~m}), 1220(\mathrm{w}), 1080(\mathrm{~s}), 1040(\mathrm{br}, \mathrm{s}), 900(\mathrm{~m}), 840(\mathrm{~s}), 740(\mathrm{~s})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.36\left(3, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55(2 \mathrm{H}, \mathrm{d}, J$ $\left.=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.07(1 \mathrm{H}, \mathrm{tm}, J=8.1 \mathrm{~Hz}, \mathrm{H} 2), 7.35-7.70(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ;$ MS $m / e 195(7), 194\left(\mathrm{M}^{+}, 5\right), 126(80), 125(22), 110(17), 109$ (16), 97 (10), 78 (60), 77 (30), 69 (100); HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ 194.0765, found 194.0765 .

1-[(1,1-Dimethylethyl) sulfinyl]-3-methylbut-2-ene (9). Treatment of sodium 2-methylpropane-2-thiolate (56 mmol) in methanol (60 mL) with 1-bromo-3-methylbut-2-ene $(8.3 \mathrm{~g}, 56 \mathrm{mmol})$ gave the sulfide as a pale yellow oil $(7.1 \mathrm{~g}, 81 \%)$: bp $36-37^{\circ} \mathrm{C}(0.8 \mathrm{~mm})$; IR (neat) $\nu_{\text {max }} 2900$ (br $\mathrm{s}), 1450(\mathrm{~s}), 1420(\mathrm{~m}), 1190(\mathrm{~s}), 860(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 1.31$ ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.16(2 \mathrm{H}, \mathrm{d}, J$ $\left.=7.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.22(1 \mathrm{H}, \mathrm{tqq}, J=7.8,1.5,1.5 \mathrm{~Hz}, \mathrm{H} 2)$; MS m/e 158 $\left(\mathrm{M}^{+}, 40\right), 102(12), 91(5), 69(100), 57(60), 41(55)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~S}: \mathrm{C}, 68.35 ; \mathrm{H}, 11.4$. Found: $\mathrm{C}, 68.0 ; \mathrm{H}, 11.0$. From the sulfide was obtained after flash chromatography with 30:70 ethyl acetate-light petroleum the sulfoxide 9: bp $125-130^{\circ} \mathrm{C}(0.5 \mathrm{~mm}$; Kugelrohr); IR (neat) $\nu_{\text {max }} 2960(\mathrm{br}, \mathrm{s}), 1640(\mathrm{w}), 1440(\mathrm{~s}), 1410(\mathrm{~s}), 1330(\mathrm{~m}), 1130$ $(\mathrm{m}), 1050(\mathrm{~s}), 850(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(90 \mathrm{MHz}) \delta 1.25(9 \mathrm{H}, \mathrm{s}, t$-Bu), $1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}, 3.20\left(2 \mathrm{H}, \mathrm{d}, J_{1.2}=7.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\right.$, $5.30\left(1 \mathrm{H}, \mathrm{tqq}, J_{2.1}=7.8, J_{2, \mathrm{Me}}=1.5, \mathrm{~Hz}, \mathrm{H} 2\right) ; \mathrm{MS} m / e 174\left(\mathrm{M}^{+}, 1\right)$, 158 (1), 156 (1), 139 (1), 118 (2), 106 (3), 91 (1), 69 (100), 57 (50), 41 (75). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}, 62.1 ; \mathrm{H}, 10.3$. Found: $\mathrm{C}, 62.5$, H, 10.0 .

5-(Phenylsulfinyl)pent-3-en-1-ol (12). A solution of 3-(phenylthio)-pent-4-en-1-ol ${ }^{48}(10 \mathrm{~g}, 52 \mathrm{mmol})$ in dichloromethane $(150 \mathrm{~mL})$ in a Pyrex flask was exposed to strong sunlight for 12 h . Evaporation of the dichloromethane followed by flash chromatography with 80:20 ethyl ace-tate-light petroleum gave the sulfide $(9.3 \mathrm{~g}, 93 \%)$ as a colorless oil: IR (neat) $\nu_{\max } 3350$ (s), 2960 (s), 1590 (s), 1490 (s), 1490 (s), 1450 (s), 1230 (w), 1050 (s), 970 (s), $740(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.64(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 2.10-2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 3.45-3.75(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 5), 5.45-5.80$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 . \mathrm{H} 4$), $7.18-7.45\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS $m / e 194\left(\mathrm{M}^{+}, 2\right), 156$ (2), $110(100), 109$ (30). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}: \mathrm{C}, 68.0 ; \mathrm{H}, 7.2$. Found: C, 68.0; H, 7.3. This gave after flash chromatography with $60: 40$ ethyl acetate-light petroleum the sulfoxide $\mathbf{1 2}$ (E / Z 85:15): IR (neat) $\nu_{\text {max }} 3400(\mathrm{br}, \mathrm{s}), 2940(\mathrm{~s}), 1600(\mathrm{w}), 1480(\mathrm{~m}), 1450(\mathrm{~m}), 1310(\mathrm{~s}), 1240$ (m), 1150 (s), $1090(\mathrm{~m}), 1050(\mathrm{~s}), 1000(\mathrm{~m}), 970(\mathrm{~m}), 750(\mathrm{~s}), 690(\mathrm{~s})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 2.10-2.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 3.30-3.75(5 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2, \mathrm{H} 5, \mathrm{OH}), 5.05-5.80(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3, \mathrm{H} 4), 7.35-7.70(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{MS}$ m/e $194\left(\mathrm{M}^{+}, 2\right), 156(2), 126(100), 125(40), 110(50)$, 109 (30). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.9 ; \mathrm{H}, 6.7$. Found: C, 63.0; H, 7.2.

5-(Phenylsulfinyl) pent-3-enyl Dimethyl(1,1-dimethylethyl)silyl Ether (13). A solution of 5 -(phenylthio)pent-3-en-1-ol ($10 \mathrm{~g}, 51.5 \mathrm{mmol}$) in dichloromethane (120 mL) containing tetramethylethylenediamine 6.0 $\mathrm{g}, 51 \mathrm{mmol})$ was treated with tert-butyldimethylsilyl chloride $(9.3 \mathrm{~g}, 61.8$ mmol). The resultant mixture was stirred for 1.5 h , and the dichloromethane was thereupon evaporated. The residue was extracted with light petroleum ($3 \times 100 \mathrm{~mL}$), and the extracts were washed successively with saturated citric acid ($3 \times 60 \mathrm{~mL}$), aqueous potassium carbonate $(10 \%$, $40 \mathrm{~mL})$, and brine. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure to leave a light yellow oil, distillation of which gave the silyl ether as a colorless liquid $(12.1 \mathrm{~g}, 76 \%)$: bp $195-205^{\circ} \mathrm{C}(0.4-0.5 \mathrm{~mm})$; IR (neat) $\nu_{\max } 2940(\mathrm{~s}), 2850(\mathrm{~m}), 1590(\mathrm{~m})$, 1480 (s), 1440 (m), 1390 (m), 1360 (m), 1260 (s), 1230 (m), $1090(\mathrm{~s})$, $1030(\mathrm{~m}), 1010(\mathrm{~m}), 970(\mathrm{~m}), 940(\mathrm{~m}), 840(\mathrm{~s}), 780(\mathrm{~m}), 740(\mathrm{~m}), 690$ (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz$)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ reference) $\delta 0.09(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.10-2.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 3.45-3.80(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 1, \mathrm{H} 5), 5.50-5.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3, \mathrm{H} 4), 7.20-7.45\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS (CI) $309(\mathrm{P}+1)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSSi}: \mathrm{C}, 66.2 ; \mathrm{H}, 9.1 ; \mathrm{S}, 9.9$. Found: $\mathrm{C}, 66.5 ; \mathrm{H}, 9.5 ; \mathrm{S}, 10.2$. The sulfide gave after flash chromatography with 10:90 ethyl acetate-light petroleum the sulfoxide ($13(E / Z$ 85:15): IR (neat) $\nu_{\max } 2970(\mathrm{sh}), 2950(\mathrm{~s}), 2870(\mathrm{sh}), 1480(\mathrm{~m}), 1460$ (m), 1400 (w), 1270 (s), 1110 (s), 1060 (s), 980 (m), 850 (s), 790 (s), $760(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right.$ reference) $\delta 0.04(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.90(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.1-2.4(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 3.4-3.7(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$, H5), 5.2-5.8 (2 H, m, H3, H4), 7.45-7.65 (5 H, m, C $\mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e 324
$\left(\mathrm{M}^{+},<1\right), 309\left(\mathrm{M}^{+}-16,<1\right), 267(10), 240(10), 227$ (18), 213 (10), 183 (20), 167 (30). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSi}: \mathrm{C}, 63.0 ; \mathrm{H}, 8.6 ; \mathrm{S}$, 9.9. Found: C, 63.0; H, 8.9; S, 10.2.
(2) Phosphine Oxides. Oct-2-enyldiphenylphosphine Oxide (14). Oct-1-en-3-ol ($5.3 \mathrm{~g}, 41.5 \mathrm{mmol}$) in dry pyridine (80 mL) under nitrogen was treated dropwise with freshly distilled chlorodiphenylphosphine (10 $\mathrm{g}, 45.5 \mathrm{mmol}$) at room temperature. After ca. 15 min , the resulting mixture was heated to reflux for 3 h under nitrogen, cooled, and then poured into 1 M hydrochloric acid and extracted with diethyl ether (2 $\times 150 \mathrm{~mL}$) and chloroform (200 mL). The combined extracts were washed repeatedly with 1 M and then 3 M HCl until the aqueous phase was acidic. Washing with brine, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporation of the solvent left a pale yellow oil. Purification by flash chromatography with 80:20 ethyl acetate-light petroleum gave the phosphine oxide as a colorless, viscous oil ($E / Z 95: 5)(10.8 \mathrm{~g}, 84 \%)$. Upon standing at $4^{\circ} \mathrm{C}$, the oil slowly solidified to a white waxy solid: $\mathrm{mp} 31-36{ }^{\circ} \mathrm{C}$; IR (neat) $\nu_{\max } 2930(\mathrm{~s}), 1710(\mathrm{w}), 1600(\mathrm{w}), 1490(\mathrm{w}), 1470(\mathrm{~m}) 1440(\mathrm{~s}), 1410$ (m), 1200 (s), $1130(\mathrm{~s}), 1110(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 0.82(3$ $\mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H} 8$), $1.06-1.28$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 7$), 1.88-2.97 (2 $\mathrm{H}, \mathrm{m}, \mathrm{H} 4), 3.08(2 \mathrm{H}, \mathrm{dd}, J=14.3,6.5 \mathrm{~Hz}, \mathrm{H} 1), 5.38-5.54(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 2, \mathrm{H} 3), 7.4-7.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e $312\left(\mathrm{M}^{+}, 34\right), 203$ (12), 202 (100), 201 (90), 183 (4), 125 (5). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OP}: \mathrm{C}$, 76.9; H, 8.0. Found: C, 76.6; H, 7.9. 1-Bromooct-2-ene ($Z / E 89: 11)^{42}$ $(5.4 \mathrm{~g}, 28 \mathrm{mmol})$ was added slowly dropwise to a solution of lithium diphenylphosphide, prepared from diphenylphosphine ($5.3 \mathrm{~g}, 28 \mathrm{mmol}$) and butyllithium ($12.9 \mathrm{~mL}, 2.4 \mathrm{M}, 31 \mathrm{mmol}$) in THF (150 mL) at -40 ${ }^{\circ} \mathrm{C}$. The bright red of the phosphide anion changed to brown-black during the addition. The resulting solution was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$ and was then quenched with aqueous ammonium chloride and extracted with chloroform ($2 \times 100 \mathrm{~mL}$). The extracts were washed successively with aqueous hydrogen peroxide ($5 \%, 125 \mathrm{~mL}$), aqueous sodium sulfite ($10 \%, 50 \mathrm{~mL}$), aqueous sodium hydrogen carbonate ($5 \%, 50 \mathrm{~mL}$), and brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent left a pale yellow oil, purification of which by flash chromatography with 80:20 ethyl acetate-light petroleum gave the phosphine oxide as a colorless viscous oil (Z / E 83:17) $(6.2 \mathrm{~g}, 70 \%)$. Upon standing, the oil slowly solidified to an amorphous white solid, $\mathrm{mp} 56-57^{\circ} \mathrm{C}$, which could not be crystallized: IR (neat) $\nu_{\text {max }} 3150$ (sh), 3040 (s), 1720 (w), 1600 (w), 1490 (m), 1470 (s), 1440 (s), 1420 (m), 1340 (w), 1320 (w), 1200 (s), $1130(\mathrm{~s}), 1080(\mathrm{~m}), 1040(\mathrm{~m}), 1000(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.83(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.07-1.36(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 7), 1.85-1.94(2 \mathrm{H}$, m, H4), 3.15 ($2 \mathrm{H}, \mathrm{dd}, J=14.75,7.5 \mathrm{~Hz}, \mathrm{Hl}$), $5.41-5.46$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ or H3), $5.53-5.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3\right.$ or H2), 7.40-7.80 ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); MS $m / e 312\left(\mathrm{M}^{+}, 15\right), 203(20), 202(100), 201(70), 183$ (3), 125 (6). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OP}: \mathrm{C}, 76.9 ; \mathrm{H}, 8.0$. Found: $\mathrm{C}, 76.6 ; \mathrm{H}, 7.9$.

But-2-enyldiphenylphosphine Oxide (15). From chlorodiphenylphosphine ($22.55 \mathrm{~g}, 0.102 \mathrm{~mol}, 18.3 \mathrm{~mL}$) and but-3-en-2-ol ($7.34 \mathrm{~g}, 85$ mmol) in dry pyridine (120 mL) according to the above was obtained the crude phosphine oxide (E / Z 91:9). Flash chromatography with 80:20 ethyl acetate-light petroleum and recrystallization from ethyl acetate gave the E isomer of 15 as fine needles ($14.42 \mathrm{~g}, 66 \%$), mp $118-120^{\circ} \mathrm{C}$ (lit. ${ }^{49} \mathrm{mp} 118-119^{\circ} \mathrm{C}$). Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy (400 MHz) showed the phosphine oxide to contain $<0.5 \%$ of the Z isomer. Crude (Z)-1-bromobut-2-ene ${ }^{50}(2.9 \mathrm{~g}, 21 \mathrm{mmol})$ was added slowly to lithium diphenylphosphide, prepared from diphenylphosphine ($4.0 \mathrm{~g}, 21.5 \mathrm{mmol}$) and butyllithium ($9.8 \mathrm{~mL}, 2.4 \mathrm{M}, 23 \mathrm{mmol}$) in THF (80 mL) at $-40^{\circ} \mathrm{C}$ under nitrogen. Workup according to conditions described above gave a yellow solid, purification of which by flash chromatography with $50: 50$ ethyl acetate-light petroleum ether and recrystallization from ethyl acetate-hexane gave the phosphine oxide $15(Z / E 95: 5)(3.8 \mathrm{~g}, 70 \%)$ as fine white prisms, $\mathrm{mp} 111-112{ }^{\circ} \mathrm{C}\left(\mathrm{lit.}^{49} \mathrm{mp} 111-112.5^{\circ} \mathrm{C}\right)$.
(3) Phosphonates. Diethyl But-2-enylphosphonate (16). Triethyl phosphite (10.5 g 63 mmol) and commercial 1-bromobut-2-ene ($E / Z 4: 1$) $(8.5 \mathrm{~g} 63 \mathrm{mmol})$ under reflux during 3 h gave the phosphonate $16(E / Z$ 80:20) [bp $90-95^{\circ} \mathrm{C}\left(0.5 \mathrm{~mm}\right.$; Kugelrohr) [lit. $\left.{ }^{51} \mathrm{bp} 110.5^{\circ} \mathrm{C}(7 \mathrm{~mm})\right]$]. A stirred solution of diethyl phosphite ($4.5 \mathrm{~g}, 32.6 \mathrm{mmol}$) in THF (100 mL) at $-10^{\circ} \mathrm{C}$ under nitrogen was treated first with butyllithium (14.5 $\mathrm{mL}, 2.3 \mathrm{M}, 32.6 \mathrm{mmol}$) and then after 5 min with a solution of $(Z)-1$. bromobut-2-ene ($4.0 \mathrm{~g}, 29.6 \mathrm{mmol}$) in THF (10 mL). The resulting solution was stirred for a further $10-15 \mathrm{~min}$ with warming to $0^{\circ} \mathrm{C}$ and then quenched with aqueous ammonium chloride. The reaction mixture was extracted with ether, and the extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure left a pale yellow oil, which was distilled to give the phosphonate ($Z / E 87: 13$) as a colorless liquid ($4.9 \mathrm{~g}, 86 \%$): bp $130-140^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$; IR (neat) $\nu_{\max } 2990$ (s), 2940 (br, s), 1660 (w), 1450 (m), 1390 (m), 1370 (w) 1250 (s), 1170 (m), 1060 (s), 1030 (s), $970(\mathrm{~s}), 850(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.321\left(6 \mathrm{H}\right.$, td, $\left.J=7.2,0.45 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.67(3 \mathrm{H}$, dddd, $J=6.5,3.5$, $0.8,0.8 \mathrm{~Hz}, \mathrm{H} 4), 2.62(2 \mathrm{H}$, dddd, $J=20.1,7.0,0.9,0.8 \mathrm{~Hz}, \mathrm{Hl}), 4.11$ ($4 \mathrm{H}, \mathrm{dq}, J=10,7.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), 5.45 ($1 \mathrm{H}, \mathrm{dddm}, J=14.9,10,6.5,0.9$
$\mathrm{Hz}, \mathrm{H} 2), 5.70(1 \mathrm{H}$, dddq, $J=19.2,10,7.0,3.6 \mathrm{~Hz}, \mathrm{H} 3)$; MS $m / e 193$ (18), $192\left(\mathrm{M}^{+}, 60\right), 177(31), 164(20), 149(16), 138(60), 137(15)$, 136 (77), 135 (15), 125 (16), 124 (20), 121 (20), 111 (75), 82 (82), 55 (100); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$ 192.0915, found 192.0910.

Conjugate Addition of (1) Lithiated Allylic Sulfoxides. General Method. The sulfoxide ($1-3 \mathrm{mmol}$) in THF ($1-3 \mathrm{~mL}$) was added slowly dropwise to a slight excess of lithium diisopropylamide (1.1 equiv), generated from butyllithium and diisopropylamine in the presence of $2,2^{\prime}$-bipyridyl as indicator in THF ($20-35 \mathrm{~mL}$) at $-70^{\circ} \mathrm{C}$ under nitrogen. The solution was stirred for 5 min , and the carbanion was treated at -70 ${ }^{\circ} \mathrm{C}$, except where indicated, with an equivalent quantity of the enone dissolved in THF ($2-4 \mathrm{~mL}$). Addition of the enone was carried out slowly so as to ensure that the reaction temperature remained constant. The mixture was then quenched with aqueous ammonium chloride and extracted with diethyl ether. The ether extract was washed with brine, dried, and evaporated to leave the crude product, which was assayed by $400-\mathrm{MHz}$ NMR prior to and after purification by flash chromatography and/or HPLC

4-tert-Butoxycyclopent-2-enone with (i) 1-(Phenylsulfinyl)oct-2-ene (4). From the sulfoxide ($E / Z 90: 10$) ($411 \mathrm{mg}, 1.73 \mathrm{mmol}$) and the enone ($301 \mathrm{mg}, 1.95 \mathrm{mmol}$) was obtained after flash chromatography with 40:60 ethyl acetate-light petroleum a $90: 10$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 S R, 4 R S, R_{\mathrm{S}} S_{\mathrm{S}}$) and ($1^{\prime} R S, 2^{\prime} E, 3 R S, 4 S R, S_{\mathrm{S}} R_{\mathrm{S}}$) diastereomers 25 and 26 of 3-(1,1-dimethylethoxy)-4-[1'-pentyl-3'-(phenylsulfinyl)-prop-2'-enyl]cyclopentanone ($531 \mathrm{mg}, 79 \%$) as a colorless oil. The major isomer was isolated by analytical HPLC (40:60 ethyl acetate-light petroleum, Whatman Partisil $10 \mathrm{M} 2050 \times 2.2 \mathrm{~cm}$ i.d. column, flow rate $13 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 1000 \mathrm{psi}$) from the mixture: IR (neat) $\nu_{\max } 3050(\mathrm{w}), 2960$ (s), 2930 (s), 1710 (s), 1085 (s), 1055 (s), 750 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $0.79-0.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.00-1.30\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right), 1.184(9 \mathrm{H}, \mathrm{s}$, t - Bu), $1.27-1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.45-1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.94(1 \mathrm{H}$, dd, $J=18.3,9.0 \mathrm{~Hz}, \mathrm{H} 5 \beta$), 2.15 (1 H , ddd, $J=18.5,6.5,1 \mathrm{~Hz}, \mathrm{H} 2 \alpha$), $2.23(1 \mathrm{H}$, dddd, $J=9.0,8.0,6.8,6.8 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 2.31$ (1 H , dddd, $J=$ $\left.9.3,6.8,6.8,3.5 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.44(1 \mathrm{H}$, ddd, $J=18.3,8.0,1 \mathrm{~Hz}, \mathrm{H} 5 \alpha$), $2.52(1 \mathrm{H}, \mathrm{dd}, J=18.5,6.5 \mathrm{~Hz}, \mathrm{H} 2 \beta), 4.03$ (1 H , ddd, $J=6.8,6.5,6.5$ $\mathrm{Hz}, \mathrm{H} 3 \beta), 6.25\left(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.47(1 \mathrm{H}, \mathrm{dd}, J=15.3,9.3$ $\mathrm{Hz}, \mathrm{H} 2$ '), $7.45-7.64$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e 374 ($\mathrm{M}^{+}-\mathrm{O}, 2$), 373 (9), 319 (4), 318 (15), 317 (56), 109 (20), 57 (100), 55 (23); HRMS calcd for [$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}-\mathrm{OH}$] 373.2200, found 373.2172 .

From the sulfoxide ($Z / E 83: 17$) $(617 \mathrm{mg}, 2.61 \mathrm{mmol})$ and the enone ($460 \mathrm{mg}, 2.9 \mathrm{mmol}$) was obtained a $79: 21$ mixture of the diastereomers 26 and 25 as a colorless oil ($471 \mathrm{mg}, 70 \%$). The major isomer was isolated by HPLC with $30: 70$ ethyl acetate-light petroleum: IR (neat) $\nu_{\text {max }} 3050$ (w), 2960 (s), 2930 (s), 1710 (s), 1085 (s), 1055 (s), 750 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.79-0.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.11(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.1-1.3$ $\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right), 1.3-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.94(1 \mathrm{H}, \mathrm{dd}, J=17.7,11.7$ $\mathrm{Hz}, \mathrm{H} 5 \beta), 2.16(1 \mathrm{H}$, ddd, $J=18.6,8.1,1 \mathrm{~Hz}, \mathrm{H} 2 \alpha), 2.26(1 \mathrm{H}$, dddd, $J=11.7,8.4,8.1,4.2 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 2.36(1 \mathrm{H}, \mathrm{ddd}, J=17.7,8.4,1 \mathrm{~Hz}$, $\mathrm{H} 5 \alpha) 2.57(1 \mathrm{H}, \mathrm{dd}, J=18.6,7.2 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.60(1 \mathrm{H}, \mathrm{dddd}, J=9.8$, $\left.9.8,4.2,4.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.83(1 \mathrm{H}$, ddd, $J=8.1,8.1,7.2 \mathrm{~Hz}, \mathrm{H} 3 \beta), 6.27$ ($1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{H} 3^{\prime}$), $6.43\left(1 \mathrm{H}, \mathrm{dd}, J=15.1,9.8 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right.$), 7.46-7.67 (5 H, m, $\mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e $374\left(\mathrm{M}^{+}-\mathrm{O}, 2\right), 373$ (10), 319 (3), 318 (14), 317 (15), 219 (20), 109 (30), 59 (23), 57 (100), 55 (26); HRMS calcd for [$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}-\mathrm{O}$] 374.2278 , found 374.2250 .
(ii) 1-(Phenylsulfinyl)but-2-ene (6). From the sulfoxide ($E / Z 80: 20$) ($391 \mathrm{mg}, 2.17 \mathrm{mmol}$) and the enone ($326 \mathrm{mg}, 2.17 \mathrm{mmol}$) was obtained a yellow oil. Purification first by flash chromatography with $40: 60$ ethyl acetate-light petroleum and then by HPLC with $30: 70$ ethyl acetatelight petroleum gave an $80: 20$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 S R, 4 R S, R_{\mathrm{S}} S_{\mathrm{S}}$) and ($1^{\prime} R S, 2^{\prime} E, 3 R S, 4 S R, S_{\mathrm{S}} R_{\mathrm{S}}$) diastereomers 27 and 28 of 3 -($1,1-d i$ methylet hoxy)-4-[1'-methyl-3'-(phenylsulfinyl)prop-2'-enyl]cyclopentanone as a pale yellow oil ($360 \mathrm{mg}, 64 \%$): IR (neat) $\nu_{\max } 2970$ (s), 1745 (s), 1420 (m), 1330 (s), 1120 (s), 1070 (s), 800 (s), 760 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (major isomer 14) $\delta 1.05\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.19$ (9 $\mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.91(1 \mathrm{H}, \mathrm{dd}, J=18.0,9.5 \mathrm{~Hz}, \mathrm{H} 5 \beta$), $2.20(1 \mathrm{H}$, ddd, J $=18.0,7.5,1.6 \mathrm{~Hz}, \mathrm{H} 5 \alpha), 2.20-2.41(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 4 \alpha), 2.58(1 \mathrm{H}$, $\mathrm{ddm}, J=18.0,6.6 \mathrm{~Hz}, \mathrm{H} 2 \beta$), $2.60-2.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 3.99(1 \mathrm{H}, \mathrm{ddd}$, $J=7.2,7.2,6.6 \mathrm{~Hz}, \mathrm{H} 3 \beta), 6.24\left(1 \mathrm{H}, \mathrm{dd}, J=15.2,1.2 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.64$ ($1 \mathrm{H}, \mathrm{dd}, J=15.2,7.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$), $7.50-7.63\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{1} \mathrm{H}$ NMR (minor isomer 15) $\delta 1.12\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.15(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.88(1 \mathrm{H}, \mathrm{dd}, J=18.0,9.5 \mathrm{~Hz}, \mathrm{H} 5 \beta), 2.1-2.7(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \beta, \mathrm{H} 2 \alpha, \mathrm{H} 4 \alpha$, $\mathrm{H} 5 \alpha$), 2.72-2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}$), $3.94(1 \mathrm{H}, \mathrm{ddd}, J=7.6,7.6,7.6 \mathrm{~Hz}$, $\mathrm{H} 3 \beta), 6.27\left(1 \mathrm{H}, \mathrm{dd}, J=15.2,1.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.56(1 \mathrm{H}, \mathrm{dd}, J=15.2$, $\left.8.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.50-7.63\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS $m / e 334$ ($\mathrm{M}^{+}, 3$), 319 (4), 317 (12), 262 (28), 261 (100), 207 (13), 193 (19), 163 (30), 131 (60) 109 (41), 59 (100); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S} 334.1602$, found 334.1602.
(iii) 3-Methyl-1-(phenylsulfinyl)but-2-ene (8). From the sulfoxide ($341 \mathrm{mg}, 1.76 \mathrm{mmol}$) and the enone ($275 \mathrm{mg}, 1.78 \mathrm{mmol}$) was obtained after flash chromatography with $40: 60$ ethyl acetate-light petroleum
(2'E,3RS,4SR, $S_{\mathrm{S}} R_{\mathrm{S}}$)-3-(1,1-dimethylethoxy)-4-[1',1'-dimethyl-3'-(phenylsulfinyl) prop-2'-enyl] cyclopentanone ($29 ; 475 \mathrm{mg}, 80 \%$) as a pale yellow oil: IR (neat) $\nu_{\text {max }} 2950(\mathrm{~s}), 1740(\mathrm{~s}), 1460(\mathrm{~m}), 1440(\mathrm{~s}), 1380$ (s), 1360 (s), $1180(\mathrm{~s}), 1070(\mathrm{~s}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 1.118\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.120\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.21(9 \mathrm{H}, \mathrm{s}, \mathrm{t}$ - Bu$), 1.75-2.80(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 4$, H5), $4.00-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.19\left(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.72(1$ $\left.\mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.45-7.75\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{MS} m / e 250$ (8), 208 (40), 109 (100), 125 (25); MS (CI) $m / e 349(\mathrm{P}+1), 363(\mathrm{P}+15)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.0 ; \mathrm{H}, 8.1 ; \mathrm{S}, 9.2$. Found: $\mathrm{C}, 69.1$; H, 8.3; S, 9.2.

A solution of tributylphosphine ($272 \mathrm{mg}, 1.32 \mathrm{mmol}$) and HMPA ($227 \mathrm{mg}, 1.35 \mathrm{mmol}$) in dry diethyl ether (10 mL) at room temperature under nitrogen was treated with a solution of iodine ($150 \mathrm{mg}, 1.2 \mathrm{mmol}$) in ether (5 mL). The resultant white suspension was treated with a solution of the conjugate addition product $29(469 \mathrm{mg}, 1.35 \mathrm{mmol})$ in diethyl ether (5 mL). During the reduction, the mixture became a clear yellow solution. This was quenched with water and extracted with diethyl ether. The extracts were washed with water and brine, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave a yellow oil. This was purified by flash chromatography with $15: 85$ ethyl acetate-light petroleum to give ($2^{\prime} E, 3 R S, 4 S R$)-3-(1,1-dimethylethoxy)-4-[1', 1 'di-methyl-3'-(phenylthio)prop-2'enyll cyclopentanone ($64 ; 369 \mathrm{mg}, 82$): IR (neat) $\nu_{\text {max }} 2970(\mathrm{~s}), 1740(\mathrm{~s}), 1585(\mathrm{w}), 1470(\mathrm{~m}), 1415(\mathrm{~m}), 1210(\mathrm{~s})$, $1180(\mathrm{~m}), 1110(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.14(1 \mathrm{H}, \mathrm{s}$, CH_{3}), $1.19(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.75-2.75(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 5), 3.98-4.20$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$), $5.91\left(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.09(1 \mathrm{H}, \mathrm{d}, J=14.4$ $\left.\mathrm{Hz}, \mathrm{H} 2^{\prime}\right), 7.15-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e $332\left(\mathrm{M}^{+}, 5\right), 258(8), 276$ (8), 178 (25), 177 (100), 109 (12), 59 (36), 57 (28), 41 (38). Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 72.3 ; \mathrm{H}, 8.4 ; \mathrm{S}, 9.6$. Found $\mathrm{C}: 72.5 ; \mathrm{H}, 8.3$; S, 9.8.

Oxidation of the sulfide $64(177 \mathrm{mg}, 0.53 \mathrm{mmol})$ with m-chloroperoxybenzoic acid ($110 \mathrm{mg}, 0.53 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ at -60 ${ }^{\circ} \mathrm{C}$ gave a yellow oil (195 mg) whose ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz) indicated that it consisted of a 1:1 mixture of the sulfoxides 29 and $\mathbf{6 5}$. These were separated by HPLC with 30:70 ethyl acetate-light petroleum ether (Waters semipreparative μ-Porasil No. 2 column, $3 \mathrm{~mL} \mathrm{~min}^{-1}, 600$ $\mathrm{psi})$ to give first the sulfoxide 29 and then ($\left.2^{\prime} E, 3 R S, 4 S R, R_{\mathrm{S}} S_{\mathrm{S}}\right)-3-(1,1-$ dimethylethoxy)-4-[1',1'-dimethyl-3'-(phenylsulfinyl)prop-2'-enyl]cyclopentanone (65): IR (CHCl_{3}) $\nu_{\text {max }} 2970(\mathrm{~s}), 1742$ (s), 1445 (m), $1390(\mathrm{~m}), 1366(\mathrm{~m}), 1291(\mathrm{~m}), 1260(\mathrm{~m}), 1157(\mathrm{~m}), 1085(\mathrm{~s}), 1070(\mathrm{~m})$ $1022(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.108\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.149\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.168(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.90-2.80(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 4, \mathrm{H} 5), 3.98-4.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 3), 6.17\left(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.67(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}$, $\left.\mathrm{H} 2^{\prime}\right), 7.45-7.75\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS $m / e 348$ (2), 331 (2), 291 (2), 279 (15), 275 (22), 207 (37), 177 (39), 167 (19), 149 (5), 145 (100), 109 (50), 91 (18), 83 (21), 57 (84); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S} 348.1758$, found 348.1759 .

But-2-en-4-olide with (i) 1-(Phenylsulfinyl)oct-2-ene (4). From the sulfoxide ($E / Z 85: 15$) ($472 \mathrm{mg}, 2.0 \mathrm{mmol}$) and the enone ($172 \mathrm{mg}, 2.0$ mmol) was obtained after flash chromatography with $40: 60$ ethyl ace-tate-light petroleum an 83:17 mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}$) and ($1^{\prime} R S, 2^{\prime} E, 3 S R, S_{\mathrm{S}} R_{\mathrm{S}}$) diastereomers 30 and 31 of [1^{\prime}-pentyl-3'-(phenylsulfinyl) prop-2'-enyl]butan-4-olide ($536 \mathrm{mg}, 83 \%$) as a colorless oil. The major isomer was isolated by HPLC according to the foregoing conditions: IR (neat) $\nu_{\text {max }} 2920$ (br), 1779 (s), 1208 (m), $1070(\mathrm{~m}), 760$ $(\mathrm{m}), 695(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.79-0.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.08-1.32(6$ $\left.\mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right), 1.32-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.23(1 \mathrm{H}, \mathrm{dd}, J=20.0,12.0$ $\mathrm{Hz}, \mathrm{H} 2 \beta), 2.18-2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 2.59(1 \mathrm{H}, \mathrm{dd}, J=20.0,8.0 \mathrm{~Hz}$, $\mathrm{H} 2 \alpha), 2.55-2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.83(1 \mathrm{H}, \mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, \mathrm{H} 4 \beta)$, 4.23 ($1 \mathrm{H}, \mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, \mathrm{H} 4 \alpha$), 6.26-6.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}$), 7.44-7.66 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e $320\left(\mathrm{M}^{+}, 17\right), 304$ (16), 303 (18), 262 (30), 219 (22), 187 (100), 139 (22), 187 (78), 139 (22), 1269270 , $125(28), 123(26), 117(50), 110(45), 109(82)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S} 320.1445$, found 320.1442 .

From the sulfoxide $4(Z / E 83: 17)$ and the enone ($472 \mathrm{mg}, 2.0 \mathrm{mmol}$) was obtained an 80:20 mixture of the diastereomers 31 and 30 as a colorless oil ($514 \mathrm{mg}, 80 \%$). The major isomer was isolated by HPLC according to the above conditions: IR (neat) $\nu_{\max } 3450$ (b), 2930 (b), 1780 (s), 1740 (s), 1470 (s), 1450 (m), 1430 (s), 1280 (s), 1210 (s), 1115 (s), $1072(\mathrm{~s}), 990(\mathrm{~m}), 765(\mathrm{~m}), 700(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.78-0.88(3$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.08-1.34\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right), 1.34-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.19$ $(1 \mathrm{H}, \mathrm{dd}, J=17.5,9.8 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.23-2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 2.47(1 \mathrm{H}$, dd, $J=17.5,9.0 \mathrm{~Hz}, \mathrm{H} 2 \alpha), 2.61(1 \mathrm{H}$, ddddd, $J=9.8,9.0,8.5,8.0,8.0$ $\mathrm{Hz}, \mathrm{H} 3), 3.97(1 \mathrm{H}, \mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, \mathrm{H} 4 \beta), 4.41(1 \mathrm{H}, \mathrm{dd}, J=9.6$, $8.0 \mathrm{~Hz}, \mathrm{H} 4 \alpha$), 6.30-6.39 (2 H, m, H2', H3'), 7.44-7.66 (5 H, m, $\mathrm{C}_{6} \mathrm{H}_{5}$); MS $m / e 320\left(\mathrm{M}^{+}, 10\right), 272(24), 219(12), 188(15), 187(100), 149$ (15), 126 (32), 123 (25), 117 (62), 109 (100); HRMS calcd for $\mathrm{C}_{18^{-}}$ $\mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S} 320.1445$, found 320.1445 .
(ii) 1-(Methylsulfinyl)oct-2-ene (5). From the sulfoxide (E / Z 92:8) ($348 \mathrm{mg}, 2.0 \mathrm{mmol}$) and the enone ($172 \mathrm{mg}, 2.0 \mathrm{mmol}$) was obtained a
pale yellow oil (410 mg), which after flash chromatography with 40:60 ethyl acetate-light petroleum gave ($\left.I^{\prime} R S, 2^{\prime} E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)$-3-[3'-(me-thylsulfinyl)-1'-pentylprop-2'-enyl]butan-4-olide (32) as a colorless oil ($325 \mathrm{mg}, 63 \%$) containing 8% of a second diastereomer: IR (neat) $\nu_{\text {max }}$ 3400 (b), 2850 (br), 1780 (s), $1620(\mathrm{~m}), 1460(\mathrm{~m}), 1420(\mathrm{~m}), 1370(\mathrm{~m})$, $1350(\mathrm{~m}), 1170(\mathrm{~s}), 960(\mathrm{~s}), 840(\mathrm{~m}), 790(\mathrm{~m}), 720(\mathrm{w}), 680(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.84-0.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.13-1.43\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right)$, $1.48-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.25-2.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 2.30(1 \mathrm{H}, \mathrm{dd}, J=$ $16.8,7.6 \mathrm{~Hz}, \mathrm{H} 2 \beta$), 2.61 (1 H , ddddd, $J=8.2,7.6,7.6,7.6,7.6 \mathrm{~Hz}, \mathrm{H} 3$), $2.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, \mathrm{H} 3), 3.95(1 \mathrm{H}$, dd, $J=9.6,7.6 \mathrm{~Hz}, \mathrm{H} 4 \beta), 4.35(1 \mathrm{H}, \mathrm{dd}, J=9.6,7.6 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 6.20(1$ $\mathrm{H}, \mathrm{dd}, J=15.2,9.8 \mathrm{~Hz}, \mathrm{H} 2), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right) ; \mathrm{MS} m / e$ $258\left(\mathrm{M}^{+}, 5\right), 241(45), 173(58), 157(22), 152(24), 135(22), 123(15)$, 109 (33), 95 (35), 93 (27), 87 (30), 85 (24), 81 (45), 79 (38); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S} 258.1289$, found 258.1272 .
(iii) 1-(Phenylsulfinyl)but-2-ene (6). The sulfoxide (E / Z 76:24) (387 $\mathrm{mg}, 2.15 \mathrm{mmol}$) and the enone ($183 \mathrm{mg}, 2.17 \mathrm{mmol}$) after flash chromatography with $40: 60$ ethyl acetate-light petroleum ether gave a $75: 25$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}$) and ($1^{\prime} R S, 2^{\prime} E, 3 S R, S_{\mathrm{S}} R_{\mathrm{S}}$) diastereomers 33 and 34 of [1^{\prime}-methyl- 3^{\prime}-(phenylsulfinyl)prop- 2^{\prime}-enyl]butan4 -olide as a pale yellow oil ($507 \mathrm{mg}, 71 \%$). The major isomer 33 was isolated by HPLC with 3:97 ethyl acetate-light petroleum (Waters semipreparative μ-Porasil No. 2 column, $30 \mathrm{~cm} \times 7.8 \mathrm{~mm}$ i.d. column, flow rate $3 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 600 \mathrm{psi}$): IR (neat) $\nu_{\text {max }} 2960(\mathrm{~s}), 1780(\mathrm{~s}), 1630(\mathrm{w})$, 1340 (w), 1210 (s), 1110 (w), 1060 (s), 1030 (s), 1000 (m), 800 (s), 730 (s), $700(\mathrm{~s}), \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.09\left(3 \mathrm{H}, \mathrm{d}, J=6.84 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.21(1$ $\mathrm{H}, \mathrm{dd}, J=16.6,7.5 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.34-2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \alpha), 2.47-2.59(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J=16.6,8.6 \mathrm{~Hz}, \mathrm{H} 2 \alpha), 3.87(1 \mathrm{H}, \mathrm{dd}, J=$ $9.3,7.2 \mathrm{~Hz}, \mathrm{H} 4 \beta$), $4.28(1 \mathrm{H}, \mathrm{dd}, J=9.3,7.2 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 6.26(1 \mathrm{H}, \mathrm{dd}$, $\left.J=15.0,0.7 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.38\left(1 \mathrm{H}, \mathrm{dd}, J=15.0,8.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.4-7.6$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e $264\left(\mathrm{M}^{+}, 4\right), 216(22), 163(10), 131(100)$, 109 (60). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 63.6 ; \mathrm{H}, 6.1 ; \mathrm{S}, 12.1$. Found: C, 63.7; H, 6.1; S, 11.7.

The minor isomer 34 could not be separated from the major diastereomer. ${ }^{1} \mathrm{H}$ NMR $\delta 1.07\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.19-2.29(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2 \beta$), 2.43-2.77 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 3 \alpha, \mathrm{Hl}^{\prime}$), $4.01(1 \mathrm{H}, \mathrm{dd}, J=9.1$, $7.2 \mathrm{~Hz}, \mathrm{H} 4 \beta), 4.42(1 \mathrm{H}, \mathrm{dd}, J=9.1,7.2 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 6.28(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=15.0,0.7 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.43\left(1 \mathrm{H}, \mathrm{dd}, J=15.0,8.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.47-7.60$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$).
(iv) 3-Methyl-1-(phenylsulfinyl)but-2-ene (8). From the sulfoxide (395 $\mathrm{mg}, 2.04 \mathrm{mmol}$) and the enone ($183 \mathrm{mg}, 2.1 \mathrm{mmol}$) was obtained after flash chromatography with $25: 75$ ethyl acetate-chloroform
 tan-4-olide ($35 ; 463 \mathrm{mg}, 82 \%$) as a colorless oil: IR (neat) $\nu_{\text {max }} 2950$ (s), 1780 (s) 1400 (s), 1210 (s), $1100(\mathrm{~s}), 1050(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.08$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30(1 \mathrm{H}, \mathrm{dd}, J=17.6,8.0 \mathrm{~Hz}, \mathrm{H} 2 \beta)$, $2.51(1 \mathrm{H}, \mathrm{dd}, J=17.6,9.2 \mathrm{~Hz}, \mathrm{H} 2 \alpha), 2.61(1 \mathrm{H}, \mathrm{dddd}, J=9.2,8.0$, $8.0,6.8 \mathrm{~Hz}, \mathrm{H} 3 \alpha), 4.05(1 \mathrm{H}, \mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, \mathrm{H} 4 \beta), 4.31(1 \mathrm{H}, \mathrm{dd}$, $J=9.6,8.0 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 6.25\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.51(1 \mathrm{H}, \mathrm{d}$, $\left.J=15.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.50-7.65\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{MS} m / e 278\left(\mathrm{M}^{+}, 5\right), 262$ (2), 230 (6), 193 (12), 177 (20), 145 (100), 109 (45). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 64.8 ; \mathrm{H}, 6.5 ; \mathrm{S}, 11.5$. Found: $\mathrm{C}, 64.6 ; \mathrm{H}, 6.5 ; \mathrm{S}, 11.7$.

Cyclopent-2-enone with (i) 1-(Phenylsulfinyl)but-2-ene (6). From the sulfoxide ($E / Z 80: 20$) ($207 \mathrm{mg}, 1.147 \mathrm{mmol}$) and the enone (94 mg , 1.147 mmol) was obtained a colorless oil (278 mg). Optimum yields were provided by saturating the quenched reaction mixture with sodium chloride prior to extraction with diethyl ether. The oil was submitted to flash chromatography with ethyl acetate-light petroleum ether (65:35 graded to $80: 20$) to give an inseparable $80: 20$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 R S, R_{S} S_{\mathrm{S}}$) and ($1^{\prime} R S, 2^{\prime} E, 3 S r, S_{\mathrm{S}} R_{\mathrm{S}}$) diastereomers 36 and 37 of (E)-[1'-methyl-3'-(phenylsulfinyl)-prop-2'-enyl]cyclopentanone as a colorless viscous oil ($217 \mathrm{mg}, 72 \%$): IR (neat) $\nu_{\text {max }} 3025$ (w), $2940(\mathrm{~m})$, 2852 (w), 1730 (s, $\mathrm{C}=\mathrm{O}$), 1465 (w), 1437 (m), 1397 (m), 1365 (w) 1270 (w), 1230 (w), 1159 (s), 1080 (s), 1045 (s), 1013 (w), 964 (m), 892 (w), 742 (s), 681 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) (* denotes minor isomer) $\delta 1.12,1.14^{*}\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.38-2.59(8 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4$, $\left.\mathrm{H} 5, \mathrm{H}^{\prime}\right), 6.20^{*}, 6.32\left(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.43^{*}, 6.55(1 \mathrm{H}, \mathrm{dd}$, $\left.J=15.3,7.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.44-7.76\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{MS} m / e 262\left(\mathrm{M}^{+}\right.$, 6), 248 (M - O, 6), 163 (44), 131 (94), 125 (20), 110 (31), 109 (60), 83 (29), 78 (28), 77 (44), 69 (47), 67 (21), 65 (28), 60 (22), 55 (100), 53 (28), 51 (37), 45 (34), 43 (78), 41 (44) 39 (42), 32 (21), 29 (32), 28 (100); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ 262.1027, found 262.1027 .

The lithiated sulfoxide ($222 \mathrm{mg}, 1.23 \mathrm{mmol}$) was generated at $-70^{\circ} \mathrm{C}$ and then treated at $-10^{\circ} \mathrm{C}$ with the enone ($101 \mathrm{mg}, 1.23 \mathrm{mmol}$) to give the above diastereomers ($254 \mathrm{mg}, 79 \%$) in the same ratio.
(ii) (tert-Butylsulfinyl) but-2-ene (7). The sulfoxide (E / Z 94:6) (216 $\mathrm{mg}, 1.35 \mathrm{mmol})$ and the enone ($111 \mathrm{mg}, 1.35 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ gave after saturation of the quenched reaction mixture with sodium chloride prior to extraction with diethyl ether a pale yellow viscous oil (340 mg). This was chromatographed with ethyl acetate to give
($\left.l^{\prime} R S, 2^{\prime} E, 3 R S, R_{\mathbf{S}} S_{\mathrm{S}}\right)$-3-[3'-[(1,l-dimethylethyl)sulfinyl]-1'-methyl-prop-2'-enyl]cyclopentanone (38) as a colorless viscous oil ($231 \mathrm{mg}, 71 \%$) containing 7% of a second diastereomer, which could not be removed: IR (neat) $\nu_{\max } 2950$ (s), 2860 (sh), 1735 (s, $\mathrm{C}=\mathrm{O}$), 1610(w), 1458 (m), 1402 (m), 1365 (m), 1280 (w), 1240 (w), 1160 (s), 1090 (w), 1050 (s), 972 $(\mathrm{m}), 920(\mathrm{w}), 805(\mathrm{~m}), 725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.76\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me.1}}{ }^{1}=6.8\right.$ $\left.\mathrm{Hz}, \mathrm{l}^{\prime}-\mathrm{CH}_{3}\right), 1.86(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.11-2.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \beta), 2.51(1 \mathrm{H}$, ddd, $J=18,10.8,1.4 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.71-2.85(3 \mathrm{H}, \mathrm{m}), 2.89-3.08(3 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{Hl}^{\prime}, \mathrm{H} 3, \mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha, \mathrm{H} 5 \beta$), 6.825 ($1 \mathrm{H}, \mathrm{dd}, J=15.3,0.7 \mathrm{~Hz}$, $\left.\mathrm{H} 3^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{dd}, J=15.3,8.6 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right)$; $\mathrm{MS}(\mathrm{CI}) m / e 485(2 \mathrm{M}+$ 1, 14), 243 ($\mathrm{M}+1,87$), 103 (9), 83 (11), 57 (100), 55 (19), 53 (9), 41 (29), 39 (20), 29 (28). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.4 ; \mathrm{H}, 9.2$. Found: C, 64.3; H, 9.4.

Repetition of the conjugate addition at $-70^{\circ} \mathrm{C}$ did not alter the ratio of the diastereomers. Addition of a solution of the enone ($232 \mathrm{mg}, 2.84$ mmol) in THF (5 mL) containing anhydrous lithium bromide (287 mg , 3.2 mmol) to the lithiated sulfoxide (from the sulfoxide, $413 \mathrm{mg}, 2.58$ $\mathrm{mmol})$ at $-70^{\circ} \mathrm{C}$ gave the product $38(550 \mathrm{mg}, 80 \%)$.
(iii) 3-Methyl-1-(phenylsulfinyl)but-2-ene (8). The sulfoxide (397 mg , 2.05 mmol) with the enone ($185 \mathrm{mg}, 2.25 \mathrm{mmol}$) after flash chromatography with $40: 60$ ethyl acetate-light petroleum ether gave ($2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}$)-3-[1', 1^{\prime}-dimethyl-3'-(phenylsulfinyl)prop-2'-enyl]cyclopentanone ($39 ; 310 \mathrm{mg}, 85 \%$) as a colorless oil, which slowly became a white solid, $\operatorname{mp} 55-59^{\circ} \mathrm{C}$, containing 20% of a second diastereomer, assumed to be the anti product. The presence of the two diastereomers could only be established through use of $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy; they had identical HPLC retention times under a variety of conditions. Similar results were obtained when the enone was added at -30 ${ }^{\circ} \mathrm{C}$ and the reaction mixture quenched at $-20^{\circ} \mathrm{C}$. The reaction was also carried out in diethyl ether at -70 and $-40^{\circ} \mathrm{C}$ to give the diastereomers in $64-72 \%$ yields: IR (neat) $\nu_{\max } 2950(\mathrm{~s}), 1740(\mathrm{~s}), 1440(\mathrm{~m}), 1420(\mathrm{w})$, $1160(\mathrm{~m}), 1080(\mathrm{~m}), 1040(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 1.11(6$ $\mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}$) 1.56-2.37 (7 H, m, H2, H3, H4, H5), $6.20(1 \mathrm{H}, \mathrm{d}, J=$ $\left.15.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.60\left(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.47-7.65, \mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}$; MS $m / e 276\left(\mathrm{M}^{+}, 6\right), 260(5), 193(20), 178(10), 177(70), 145(100), 139$ (20), 126 (30), 109 (50). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 69.6 ; \mathrm{H}, 7.3$. Found: C, 69.3; H, 7.7
(iv) 1-(tert-Butylsulfinyl)-3-methylbut-2-ene (9). The sulfoxide (385 $\mathrm{mg}, 2.14 \mathrm{mmol}$) and the enone ($216 \mathrm{mg}, 2.24 \mathrm{mmol}$) gave after flash chromatography with $60: 40$ ethyl acetate-light petroleum ether ($2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}$)-3-[1', 1^{\prime}-dimethyl- $3^{\prime}-[(1,1-$ dimethylethyl $)$ sulfinyl $] p r o p-$ 2^{\prime}-enyl]cyclopentanone ($40 ; 330 \mathrm{mg}, 57 \%$) as prisms, $\mathrm{mp} 72-74^{\circ} \mathrm{C}$ from ethyl acetate-light petroleum. When the anion was generated at $-60^{\circ} \mathrm{C}$, treated with the enone at $-20^{\circ} \mathrm{C}$, and quenched at $-10^{\circ} \mathrm{C}, 40$ was obtained in 80% yield: IR (neat) $\nu_{\text {max }} 2865$ (br, s), 1735 (s), 1460 (s), 1410 (s), 1190 (s), 1140 (s), 1040 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 1.136(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.139\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.225(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.63(1 \mathrm{H}, \mathrm{ddm}, J=$ $10.0,8.25 \mathrm{~Hz}, \mathrm{H} 4 \beta$), $1.90-2.39$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 2 \beta, \mathrm{H} 3 \alpha, \mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha$), $2.34(1 \mathrm{H}, \mathrm{ddm}, J=18.6,8.25 \mathrm{~Hz}, \mathrm{H} 5 \beta), 6.10(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}$, $\left.\mathrm{H} 3^{\prime}\right), 6.43\left(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right)$; MS $m / e 256\left(\mathrm{M}^{+}, 1\right), 240(1)$, 200 (1), 125 (10), 109 (100), 101 (30), 69 (25), 57 (90); MS (CI) m/e $257(\mathrm{P}+1), 513(2 \mathrm{P}+1)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.6 ; \mathrm{H}$, 9.4. Found: C, 66.0; H, 9.8.
(v) 5-(Phenylsulfinyl) pent-3-en-1-ol (12). The sulfoxide (E / Z 85:15) ($427 \mathrm{mg}, 2.03 \mathrm{mmol}$) and the enone ($190 \mathrm{mg}, 2.3 \mathrm{mmol}$) gave after flash chromatography with ethyl acetate ($\left.1^{\prime} R S, 2^{\prime} E, 3 R S, R_{S} S_{\mathrm{s}}\right)-3-\left[1^{\prime}-\left(2^{\prime \prime}-\right.\right.$ hydroxyethyl) $\mathbf{3}^{\prime}$-(phenylsulfinyl)prop-2'-enyl]cyclopentanone (41) as a colorless oil ($530 \mathrm{mg}, 90 \%$) containing 15% of a second diastereomer This was submitted to HPLC (ethyl acetate, Waters semipreparative μ-Porasil No. 2 column, $3 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 400 \mathrm{psi}$) to give the major isomer ($350 \mathrm{mg}, 58 \%$) as needles, $\mathrm{mp} 85-88^{\circ} \mathrm{C}$ from diethyl ether-ethyl acetate IR (CHCl_{3}) $\nu_{\text {max }} 3621(\mathrm{~s}), 3450(\mathrm{~s}, \mathrm{OH}), 3010(\mathrm{~s}), 2976$ (s), 2895, (m), $1740(\mathrm{~s}), 1445(\mathrm{~m}), 1402(\mathrm{~m}), 1242(\mathrm{~m}), 1084(\mathrm{~m}), 1045(\mathrm{~s}), 677(\mathrm{~m})$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 1.41-2.47(10 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.54(1 \mathrm{H}$, ddd, $\left.J=10.7,8.9,5.6 \mathrm{~Hz}, \mathrm{H} 2^{\prime \prime}\right), 3.67$ (1 H , ddd, $J=10.7,8.9,5.6 \mathrm{~Hz}$, $\left.\mathrm{H} 2^{\prime \prime}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.41(1 \mathrm{H}, \mathrm{dd}, J=15.1,9.5 \mathrm{~Hz}$, H2'), 7.47-7.65 (5 H, m, C C_{6}); MS m/e $292\left(\mathrm{M}^{+}, 2\right), 275(28), 193$ (5), 167 (46), 165 (10), 153 (14), 126 (48), 109 (43), 83 (68), 55 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$: C, $65.8 ; \mathrm{H}, 6.9$. Found: $\mathrm{C}, 66.1 ; \mathrm{H}, 7.2$.
(vi) 5-(Phenylsulfinyl) pent-3-enyl Dimethyl(1,1-dimethylethyl) silyl Ether (13). From the sulfoxide ($E / Z 85: 15$) ($477 \mathrm{mg}, 1.47 \mathrm{mmol}$) and the enone ($133 \mathrm{mg}, 1.62 \mathrm{mmol}$) was obtained after flash chromtography with 35:65 ethyl acetate-light petroleum an $85: 15$ mixture of diastereomers of the conjugate addition product. The mixture was submitted to HPLC (35:65 ethyl acetate:light petroleum, Brownlee column, SI 100, $5 \mu \mathrm{~m}$, flow rate $1.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 500 \mathrm{psi}$) to give ($1^{\prime} R S, 2^{\prime} E, 3 R S, R_{S} S_{\mathrm{S}}$) $3-\left[1^{\prime}-\left[2^{\prime \prime}-[\right.\right.$ dimethyl(1,1-dimethylethyl) siloxy $]$ ethyl $]-3^{\prime}$-(phenyl-sulfinyl)-prop-2'enyl]cyclopentanone (42) as a clear viscous oil (450 mg , 73%): IR (neat) $\nu_{\text {max }} 2940$ (s), 2840 (sh), 1730 (s), 1470 (m), 1420 (m), $1400(\mathrm{~m}), 1380(\mathrm{~m}), 1250(\mathrm{~s}), 1180(\mathrm{~s}), 1140(\mathrm{~s}), 970(\mathrm{~m}), 940(\mathrm{~m}), 830$
(s), $770(\mathrm{~s}), 740(\mathrm{~m}), 690(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.09\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right)$, $0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.24-2.54(10 \mathrm{H}, \mathrm{m}), 3.30-3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime \prime}\right)$, 6.19-6.30 (2 H, m, $\left.\mathrm{H}^{\prime}{ }^{\prime}, \mathrm{H}^{\prime}\right), 7.14-7.64\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 392 (3), 391 (3), 390 (5), 375 (6), 349 (100), 333 (100), 288 (12), 276 (10). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SSi}$: C, $65.0 ; \mathrm{H}, 8.37$ Found: C, $64.8 ; \mathrm{H}$, 8.8.

2,2-Dimethyl-3(2H)-furanone with 3-[(4-Methylphenyl)sulfinyl]prop-1-ene (10). The sulfoxide ($579 \mathrm{mg}, 3.22 \mathrm{mmol}$) and the enone (396 mg , 3.54 mmol) gave after flash chromatography with 35:65 ethyl acetatelight petroleum ($2^{\prime} E, 4 R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-dihydro-2,2-dimethyl-5-[[(4-methyl-phenyl)sulfinyl]prop-2'-enyl]-3(2H)-furanone (43) as a colorless oil (670 $\mathrm{mg}, 71 \%$) containing 17% of a second diastereomer: IR (neat) $\nu_{\text {max }} 2980$ (s), 1760 (s), 1600 (w) 8,1480 (m), 1380 (s), 1180 (s), 1110 (s), 1080 (m), $1040(\mathrm{~s}), 1010(\mathrm{~m}), 960(\mathrm{~m}), 810(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{dd}, J=18.2$, $9.9 \mathrm{~Hz}, \mathrm{H} 4 \beta), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J=18.2,5.8 \mathrm{~Hz}, 4 \alpha)$, $2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 4.32(1 \mathrm{H}$, dddd, $J=9.9,5.8,5.8,5.8 \mathrm{~Hz}, \mathrm{H} 3 \alpha)$, $6.36\left(1 \mathrm{H}\right.$, ddd, $\left.J=15.2,1.3,1.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.61(1 \mathrm{H}$, ddd, $J=15.2$, $\left.6.9,6.9 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.32-7.51\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; MS m/e $292\left(\mathrm{M}^{+}, 14\right) 276$ (34), 244 (40), $180(12), 164$ (33), 163 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.8 ; \mathrm{H}, 6.9$. Found: $\mathrm{C}, 65.6 ; \mathrm{H}, 7.0$.

3-Methylcyclopent-2-enone with (i) 3-Methyl-1-(phenylsulfinyl)but-2ene (8). The sulfoxide ($333 \mathrm{mg}, 1.72 \mathrm{mmol}$) and the enone ($182 \mathrm{mg}, 1.89$ mmol) gave a pale yellow oil (550 mg), which upon standing deposited fine white needles. The crystals were filtered, washed with cold diethyl ether, and dried to give $1-\left[3^{\prime}-m e t h y l-l^{\prime}-(\right.$ phenylsulfinyl)but-2'-enyl]-3-methylcyclopent-2-en-1-ol (44) as white needles $(460 \mathrm{mg}, 83 \%)$, mp $84-87{ }^{\circ} \mathrm{C}$ (dec). A solution of the solid in CDCl_{3} according to ${ }^{1} \mathrm{H}$ NMR analysis contained four diastereomers; the ratio of these in the solution changed with time. After 10 min of dissolving the above compound in acid-free CDCl_{3}, the ratio of the four isomers was $5: 10: 27: 58$, at 35 min the ratio had changed to $8.5: 16: 38.5: 37$, and after 4.5 h the ratio was 12:22:49.5:16.5. The mixture decomposed during attempted chromatography or recrystallization: IR $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3660(\mathrm{~m}), 3600(\mathrm{~m}), 3350$ (s), 2940 (brs), 2400 (s), 1660 (m), 1600 (w), 1410 (brs), 1260 (s), 1150 (s), $1000(\mathrm{~s}), 910(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer at 10 min$) \delta 0.830$ ($3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.626\left(3 \mathrm{H}, \mathrm{d}, J=1.24 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 1.787 (3 $\left.\mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.92-2.68(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H} 5), 3.27(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.30\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 5.34\left(1 \mathrm{H}, \mathrm{dm}, J=11.2 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 5.57$ $(1 \mathrm{H}, \mathrm{m}, J=1.5 \mathrm{~Hz}, \mathrm{H} 2), 7.40-7.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{MS} m / e 292\left(\mathrm{M}^{+}\right.$ $+2,10), 250(12), 234(11), 218(10), 186(77), 147(60), 146(72), 131$ (100).
(ii) 3-[(4-Methylphenyl) sulfinyl] prop-1-ene (10). The sulfoxide (446 $\mathrm{mg}, 2.48 \mathrm{mmol}$) and the enone ($267 \mathrm{mg}, 2.78 \mathrm{mmol}$) after flash chromatography with 45:55 ethyl acetate-light petroleum gave first unreacted sulfoxide (77 mg) and then ($2^{\prime} E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-3-methyl-3-[3'-[(4methylphenyl) sulfinyl]prop-2'-enyl]cyclopentanone (45; $490 \mathrm{mg}, 71 \%$) as a colorless oil. When HMPA was used in the reaction, the products was obtained in 59% yield, together with a considerable amount of starting material: IR (neat) $\nu_{\text {max }} 2960$ (s), 1740 (s), 1610 (w), 1490 (w), $1450(\mathrm{~m}), 1410(\mathrm{~m}), 1160(\mathrm{~m}), 1080(\mathrm{~m}), 1140(\mathrm{~s}), 960(\mathrm{~m}), 810(\mathrm{~m})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77-1.95(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \alpha, \mathrm{H} 4 \beta)$, $2.05(1 \mathrm{H}, \mathrm{dd}, J=18.0,1 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.12(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{H} 2 \alpha)$, 2.25-2.35 (4 H, m, H5 $\alpha, \mathrm{H} 5 \beta, \mathrm{Hl}^{\prime}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $6.28(1 \mathrm{H}, \mathrm{dt}$, $\left.J=15.0,1.25,1.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.58\left(1 \mathrm{H}\right.$, ddd, $\left.J=15.0,7.5,7.5 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right)$, $7.30-7.55\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS $m / e 276\left(\mathrm{M}^{+}, 4\right), 260(10), 228(30)$, 163 (37), 131 (100), 123 (26), 97 (20), 91 (30). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 69.6 ; \mathrm{H}, 7.2$. Found: $\mathrm{C}, 69.4 ; \mathrm{H}, 7.2$.

Cyclohex-2-enone with (i) 3-Methyl-1-(phenylsulfinyl) but-2-ene (8). From the sulfoxide ($378 \mathrm{mg}, 1.95 \mathrm{mmol}$) and the enone ($203 \mathrm{mg}, 2.15$ mmol) was obtained a yellow oil, which after flash chromatography with 30:70 ethyl acetate-light petroleum gave first ($2^{\prime} E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-3-[1', $1^{\prime}-$ dimethyl-3'-(phenylsulfinyl) prop-2'-enyl] cyclohexanone (46; 250 mg , 44%) as a colorless oil: IR (neat) $\nu_{\text {max }} 2980(\mathrm{~s}), 1710(\mathrm{~s}), 1480(\mathrm{~m}), 1450$ (m), $1100(\mathrm{~m}), 1060(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.25-2.43$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$), $6.16\left(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.55$ ($1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$), 7.47-7.65 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e 290 $\left(\mathrm{M}^{+}, 6\right), 274(2), 193(10), 177(100), 164(18), 145(60), 109(50)$. Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 70.3 ; \mathrm{H}, 7.9$. Found: C, $70.0 ; \mathrm{H}, 7.9$.

The next fraction eluted was a mixture of four diastereomers of the carbonyl addition product 47 obtained initially as a yellow oil (200 mg , 35%), which could not be resolved into its components by HPLC and which upon removal of traces of solvent became a white solid. This was recrystallized from ethyl acetate-light petroleum to give an unstable solid as needles, $\mathrm{mp} 107-112^{\circ} \mathrm{C} . \mathrm{A} \mathrm{CDCl}_{3}$ solution of the solid contained a 32:30:28:20 mixture of diastereomers of 1-[3'-methyl-1'(phenyl-sulfinyl)but-2'-enyl]cyclohex-2-en-1-ol: IR (CHCl_{3}) $\nu_{\text {max }} 3600$ (sh), 3400 (br, s, OH), 1450 (s), 1380 (m), 1090 (s), 1010 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 0.78\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.644(3 \mathrm{H}, \mathrm{d}, J=1.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.6-2.5(6 \mathrm{H}, \mathrm{m}), 3.142(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{H1}), 4.12(1$
$\mathrm{H}, \mathrm{s}, \mathrm{OH}$), $4.411\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{2}^{\prime}\right), 5.313(1 \mathrm{H}, \mathrm{dm}, J \simeq 10$ $\mathrm{Hz}, \mathrm{H} 2), 5.88-5.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 7.4-7.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 250 (6), 218 (4) 165 (12), 164 (22), 148 (20), 147 (19), 146 (18), 133 (13), 131 (24), 125 (57), 121 (20), 110 (33), 109 (50), 108 (35), 105 (30), 78 (100), 77 (90), MS (CI) $m / e 291(P+1)$. Because of the instability of the compounds, satisfactory combustion analyses could not be obtained.

When the above reaction was performed in the presence of HMPA (l equiv) the same two regioisomeric products 46 and 47 were again obtained in the ratio $60: 40$ (77\%). Addition of the cyclohexenone in THF containing 2 equiv of lithium bromide to the lithiated sulfoxide gave an 85% yield of the products in a ratio of 65:35.
(ii) 3-(Phenylsulfinyl)prop-1-ene (11). The sulfoxide ($387 \mathrm{mg}, 2.33$ mmol) and the enone ($246 \mathrm{mg}, \mathrm{mg}, 2.56 \mathrm{mmol}$) gave a yellow oil, which after radial chromatography with $1: 1$ ethyl acetate-light petroleum gave two fractions. 'The less polar fraction ($63 \mathrm{mg}, 10 \%$) was an inseparable, approximately equimolar mixture of four diastereomers of [1 '-(phenyl-sulfinyl)prop-2'enyl]cyclohex-2-en-1-ol $(49 ; 63 \mathrm{mg}, 10 \%)$, an unstable white amorphous solid: IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3600$ (sh), 3390-3430 (brs), 2936 (s), 2869 (sh), 1687 (w), 1478 (w), 1444 (s), 1327 (w), 1146 (m), 1136 (m), 1085 (s), 1059 (s), $1020(\mathrm{~s}), 998(\mathrm{~s}), 935(\mathrm{~m}), \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.18-1.55(6 \mathrm{H}, \mathrm{m}), 2.98$ (brs, OH), 3.46 (brs, OH), 2.91 ($1 \mathrm{H}, \mathrm{d}, J$ $\left.=10.3 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.99\left(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 3.50(1 \mathrm{H}, \mathrm{d}, J=10.7$ $\left.\mathrm{Hz}, \mathrm{Hl}^{\prime}\right), 3.57\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 4.51(1 \mathrm{H}, \mathrm{ddd}, J=17.2$, $\left.1.8,0.6 \mathrm{~Hz}, \mathrm{H}^{\prime} E\right), 4.53\left(1 \mathrm{H}, \mathrm{ddd}, J=17.2,1.8,0.6 \mathrm{~Hz}, \mathrm{H}^{\prime} E\right), 4.57$ (1 H , ddd, $J=17.2,1.3,0.5 \mathrm{~Hz}, \mathrm{H}^{\prime} E$), 4.64 (1 H , ddd, $J=17.2$, 1.3, $\left.0.5 \mathrm{~Hz}, \mathrm{H} 3^{\prime} E\right), 5.11\left(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime} \mathrm{Z}\right), 5.15(1 \mathrm{H}$, dd, $J=10.5,1.8 \mathrm{~Hz}, \mathrm{H}^{\prime} Z$), $5.17\left(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.3 \mathrm{~Hz}, \mathrm{H}^{\prime} Z\right), 5.19$ ($1 \mathrm{H}, \mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, \mathrm{H}^{\prime} Z$) , $5.40-5.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right.$ two isomers), 5.80-6.03 (m, H2' two isomers), 7.43-7.80 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$) ; MS m/e 250 (9), 256 (1), 218 (3), 196 (1), 166 (5), 149 (7), 137 (50), 127 (50), 125 (60), 119 (42), 109 (48), 77 (100).

The more polar fraction was submitted to HPLC with 60:40 ethyl acetate-light petroleum (Whatman 10 M 20 column, flow rate 13 mL $\min ^{-1}, 800 \mathrm{psi}$) to give three fractions in the approximate ratio of 65:20:15. The least polar, most abundant fraction ($R_{t} 93 \mathrm{~min}$) was an inseparable 62:38 mixture of diastereomers of $3 \cdot\left[3^{\prime}-(p h e n y l s u l f i n y l)\right.$ -prop-2'-enyl]cyclohexanone ($48 ; 362 \mathrm{mg}, 59 \%$): IR (neat) $\nu_{\max } 2937$ (s), 1708 (s), 1443 (s), 1084 (s), 1043 (s), 1022 (m), 968 (m), 749 (s), 690 (m) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR (* denotes minor isomer) $\delta 1.25-2.37(11 \mathrm{H}, \mathrm{m})$, $6.20,6.21^{*}\left(1 \mathrm{H}\right.$, ddd, $\left.J=15.1,1.2,1.2 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.467,6.474^{*}(1 \mathrm{H}$, ddd, $\left.J=15.1,7.6,7.6 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.38-7.58\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m / e $262\left(\mathrm{M}^{+}, 5\right), 246(7), 214$ (100), 196 (8), 156 (40), 149 (55), 147 (10), 136 (16), 123 (45), 117 (60), 109 (45), 97 (61), 95 (42), 91 (20), 83 (18), 77 (23); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ 262.1027, found 262.1027.

The next fraction to be eluted ($R_{t} 102 \mathrm{~min}$) was $1-\left[3^{\prime}-(p h e n y l-\right.$ sulfinyl) prop-2'-enyl]cyclohex-2-en-1-ol ($\mathbf{5 0} ; 68 \mathrm{mg}, 11 \%$) as a colorless oil: IR (neat) $\nu_{\max } 3370$ (s), 2934 (s), 1443 (s), 1083 (s), 1033 (s), 1021 (s), $997(\mathrm{~m}), 980(\mathrm{~m}), 970(\mathrm{~m}), 750(\mathrm{~m}), 690(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $1.18-2.40(6 \mathrm{H}, \mathrm{m}), 2.42\left(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.80(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $5.60(1 \mathrm{H}, \mathrm{dm}, J=9.9 \mathrm{~Hz}, \mathrm{H} 2), 5.82(1 \mathrm{H}, \mathrm{ddd}, J=9.9,4.5,3.1 \mathrm{~Hz}$, H3), $6.29\left(1 \mathrm{H}, \mathrm{dt}, J=15.1,1.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.67(1 \mathrm{H}, \mathrm{dt}, J=15.1,7.4$ $\left.\mathrm{Hz}, \mathrm{H} 2^{\prime}\right), 7.39-7.67\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e $262\left(\mathrm{M}^{+}, 2\right), 245(4), 166$ (71), 149 (85), 134 (10), 117 (42), 109 (28), 97 (100), 91 (22), 79 (38), 78 (35), 77 (45); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S} 262.1027$, found 262.1024

The third and least abundant fraction eluted ($R_{t} 120 \mathrm{~min}$) was identified as a second diastereomer of $1-\left[3^{\prime}-(p h e n y l\right.$ lsulfinyl) prop-2'-enyl $]$ -cyclohex-2-en-1-ol ($50 ; 53 \mathrm{mg}, 9 \%$) on the basis of the following data: IR (neat) $\nu_{\max } 3380$ (s), 2934 (s), 1443 (m), 1084 (s), 1028 (s), 1019 (s), $986(\mathrm{~m}), 746(\mathrm{~m}), 689(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.5-2.5(7 \mathrm{H}, \mathrm{m}), 2.75(1$ H, ddd, $\left.J=14.0,7.0,0.9 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.92$ (1 H , ddd, $J=14.0,7.0,0.5$ $\left.\mathrm{Hz}, \mathrm{Hl}^{\prime}\right), 5.68\left(1 \mathrm{H}, \mathrm{dm}, J=9.9 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 5.89(1 \mathrm{H}, \mathrm{ddd}, J=9.9,4.3$, $3.1 \mathrm{~Hz}, \mathrm{H} 3$), 6.33-6.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}$), $7.40-7.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$); MS $m / e 245(2), 244(<1), 166(68), 149(100), 134(10), 125(8), 117$ (20), 109 (10), 97 (64), 91 (12), 77 (13); HRMS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}\right.$ $\left.-\mathrm{H}_{2} \mathrm{O}\right] 244.0922$, found 244.0923.

Cyclohept-2-enone with 3-Methyl-1-(phenylsulfinyl)but-2-ene (8). From the sulfoxide ($476 \mathrm{mg}, 2.45 \mathrm{mmol}$) and the enone ($321 \mathrm{mg}, 2.9$ $\mathrm{mmol})$ at $-70^{\circ} \mathrm{C}$ was obtained a yellow oil (690 mg), which became a crystalline solid after 24 h at $4^{\circ} \mathrm{C}$. Although this could be recrystallized from ethyl acetate to give $1-\left[3^{\prime}-\right.$ methyl-1'-(phenylsulfinyl)but-2'-enyl]-cyclohept-2-en-1-ol (51) as crystalline aggregates of prisms, mp 109-112 ${ }^{\circ} \mathrm{C}(570 \mathrm{mg}, 77 \%)$, a solution in CDCl_{3} consisted of a 36:30:20:14 mixture of diastereomers. Attempted separation by HPLC was unsuccessful since the isomers underwent equilibration under these conditions: IR (neat) $\nu_{\max } 3360$ (brs), 2920 (s), $1660(\mathrm{~m}), 1450(\mathrm{~s}), 1380(\mathrm{~m}), 1250(\mathrm{w})$, 1220 (w), 1170 (w), 1080 (s), 1030 (s), 910 (m), 850 (m), 730 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (major diastereomer) $\delta 0.77\left(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.65$ ($3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.35-2.45(8 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{d}, J=11.3$ $\left.\mathrm{Hz}, \mathrm{Hl}^{\prime}\right), 4.1(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.96\left(1 \mathrm{H}, \mathrm{dm}, J=11.3 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 6.11(1$

H , ddd, $J=11.3,6.7,5.9 \mathrm{~Hz}, \mathrm{H} 3), 6.29(1 \mathrm{H}, \mathrm{dm}, J=11.3 \mathrm{~Hz}, \mathrm{H} 2)$, $7.40-7.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS (CI) $m / e 305(\mathrm{P}+1)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.05 ; \mathrm{H}, 7.9 ; \mathrm{S}, 10.5$. Found: $\mathrm{C}, 71.0 ; \mathrm{H}, 7.9 ; \mathrm{S}, 11.0$.

4,4a,5,6,7,8-Hexahydro-4a-methyl-2 $(3 H)$-naphthalenone with 1 -(Phenylsulfinyl)prop-2-ene (11). The sulfoxide ($428 \mathrm{mg}, 2.57 \mathrm{mmol}$) and the enone ($529 \mathrm{mg}, 3.23 \mathrm{mmol}$) gave after flash chromatography with 40:60 ethyl acetate-light petroleum a $70: 30$ mixture of two diastereomers of ($\left.2^{\prime} E\right)-4,4 a, 5,6,7,8$-hexahydro-4a-methyl-2-[3'-(phenylsulfinyl)prop-2-enyl]-2(3H)-naphthalenol (52) as a colorless oil ($500 \mathrm{mg}, 53 \%$): IR (neat) $\nu_{\text {max }} 3350(\mathrm{br}, \mathrm{s}), 2930(\mathrm{~s}), 2850(\mathrm{~m}), 1700(\mathrm{w}), 1030(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (90 MHz) (major diastereomer) $\delta 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.8-2.8$ $(14 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 6.24\left(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.68(1$ H , ddd, $\left.J=15.8,6.8,6.8 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right) 7.3-7.6\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m / e $314\left(\mathrm{M}^{+}-16,5\right), 313$ (18), 297 (10), 264 (20), 165 (40), 166 (37), 149 (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 72.7 ; \mathrm{H}, 7.9$. Found: C, 72.9; H, 7.9. ${ }^{1} \mathrm{H}$ NMR and TLC analyses of the crude product mixture also indicated the presence both of starting compounds and substantial amounts of a less polar unidentified product, which decomposed upon attempted isolation.
(2) Lithiated Allylic Phosphine Oxides and Phosphonates. General Method. This was as for the allylic sulfoxides except that butyllithium was used for the deprotonation. It was added to the solution of the phosphine oxide ($1-3 \mathrm{mmol}$) in THF until the first permanent appearance of the red color of the carbanion. Thereupon, 1.1 equiv of the butyllithium was added. For the phosphonates, whose carbanions are less intensely colored, 1.1 equiv of butyllithium was added to the solutions after the first permanent appearance of the red color of an added indicator, 2,2'-bipyridyl.

4-tert-Butoxycyclopent-2-enone with Oct-2-enyldiphenylphosphine oxide (14). From the phosphine oxide ($E / Z 95: 5$) ($730 \mathrm{mg}, 2.34 \mathrm{mmol}$) and the enone ($387 \mathrm{mg}, 2.52 \mathrm{mmol}$) was obtained after flash chromatography with 80:20 ethyl acetate-light petroleum ether a $95: 5$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 S R, 4 R S$) and ($1^{\prime} R S, 2^{\prime} E, 3 R S, 4 S R$) diastereomers 53 and 54 of 3-(1,1-dimethylethoxy)-4-[3'-(diphenylphosphinoyl)-1'-pentylprop-2'-enyl]cyclopentanone as a colorless oil ($875 \mathrm{mg}, 81 \%$): IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 2970(\mathrm{~s}), 1740$ (s), 1630 (w), 1440 (w), 1370 (m), 1180 (s), $1120(\mathrm{~m}), 1100(\mathrm{~m}), 1000(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 0.85$ ($3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.13(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.16-1.57(8 \mathrm{H}, \mathrm{m}), 1.97$ (1 H , ddd, $J=18.0,9.5,1 \mathrm{~Hz}, \mathrm{H} 5 \beta$), 2.15 (1 H , ddd, $J=18.5,6.3,1.2$ $\mathrm{Hz}, \mathrm{H} 2 \alpha), 2.25(1 \mathrm{H}$, dddd, $J=9.5,8.3,6.8,6.2 \mathrm{~Hz}, \mathrm{H} 4 \alpha), 2.41(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Hl}^{\prime}\right), 2.42(1 \mathrm{H}$, ddd, $J=18.0,8.3,1.5 \mathrm{~Hz}, \mathrm{H} 5 \alpha$), $2.51(1 \mathrm{H}$, ddd, $J=18.5,6.5,1 \mathrm{~Hz}, \mathrm{H} 2 \beta), 4.01(1 \mathrm{H}, \mathrm{ddd}, J=6.6,6.0,6.2 \mathrm{~Hz}, \mathrm{H} 3 \beta)$, $6.26\left(1 \mathrm{H}\right.$, ddd, $J=24.8,16.9,0.6 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $6.62(1 \mathrm{H}$, ddd, $J=19.0$, $\left.16.9,9.0 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.43-7.75\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e $466\left(\mathrm{M}^{+}, 1\right)$, 409 (10), 392 (10), 339 (12), 326 (15), 325 (43), 312 (35), 311 (63), 355 (11), 203 (15), 202 (53), 201 (45). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}: \mathrm{C}, 74.7$; $\mathrm{H}, 8.4 ; \mathrm{P}, 6.7$. Found: $\mathrm{C}, 74.3 ; \mathrm{H}, 8.6 ; \mathrm{P}, 6.8$.

From the phosphine oxide ($Z / E 83: 17$) $(482 \mathrm{mg}, 1.55 \mathrm{mmol})$ and the enone ($264 \mathrm{mg}, 1.70 \mathrm{mmol}$) after flash chromatography with 70:30 ethyl acetate-light petroleum was obtained an $82: 18$ mixture of the diastereomers 54 and 53 as a colorless oil ($600 \mathrm{mg}, 83 \%$). Upon standing at $4^{\circ} \mathrm{C}$, the oil became a white solid, $\mathrm{mp} 80-81^{\circ} \mathrm{C}$, which could not be recrystallized: IR (neat) $\nu_{\max } 2970 \mathrm{~ns}$), 1740 (s), 1630 (s), 1440 (w), 1370 (m), 1180 (s), 1120 (m), 1100 (m), 1000 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.22-1.57(8 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{dd}, J=17.7,10.8 \mathrm{~Hz}, \mathrm{H} 5 \beta), 2.14(1 \mathrm{H}$, ddd, $J=18.6,8.1,1.8 \mathrm{~Hz}, \mathrm{H} 2 \alpha$), 2.27 (1 H , dddd, $J=9.5,8.3,8.1,4.5$ $\mathrm{Hz}, \mathrm{H} 4 \alpha$), $2.34(1 \mathrm{H}$, ddd, $J=17.7,7.9,1.8 \mathrm{~Hz}, \mathrm{H} 5 \alpha), 2.56(1 \mathrm{H}, \mathrm{dd}$, $J=18.6,6.9 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.68\left(1 \mathrm{H}, \mathrm{ddm}, J=9.2,4.5 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 3.87(1$ H , ddd, $J=8.1,8.1,7.2 \mathrm{~Hz}, \mathrm{H} 3 \beta$), 6.31 (1 H , ddd, $J=26.0,16.9,0.6$ $\mathrm{Hz}, \mathrm{H} 3^{\prime}$), 6.65 (1 H, ddd, $J=19.0,16.9,9.2 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $7.43-7.75$ (10 $\mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$) ; MS m/e $466\left(\mathrm{M}^{+}, 1\right), 409(8), 392(10), 339$ (12), 326 (15), 325 (46), 312 (37), 311 (64), 225 (13), 202 (53), 201 (45), 57 (100). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}: \mathrm{C}, 74.7 ; \mathrm{H}, 8.4$. Found: $\mathrm{C}, 74.7$; H, 8.5.

Cyclopent-2-enone with (i) But-2-enyldiphenylphosphine Oxide (15). The phosphine oxide ($E / Z>99.5: 0.5$) ($439 \mathrm{mg}, 1.72 \mathrm{mmol}$) and the enone ($161 \mathrm{mg}, 1.96 \mathrm{mmol}$) at $-70^{\circ} \mathrm{C}$ gave after flash chromatography with 90:10 ethyl acetate-light petroleum a single diastereomer as a white solid. Recrystallization from ethyl acetate-light petroleum gave ($l^{\prime} R S, 2^{\prime} E, 3 R S$)-3-[3'-(diphenylphosphinoyl)-1'-methylprop-2'-enyl]cyclopentanone ($55 ; 460 \mathrm{mg}, 80 \%$) as needles: $\mathrm{mp} 85-87^{\circ} \mathrm{C}$, IR (CH$\mathrm{Cl}_{3}$) $\nu_{\max } 2950(\mathrm{~s}), 1730(\mathrm{~s}), 1610(\mathrm{w}), 1430(\mathrm{~m}), 1390(\mathrm{w}), 1370(\mathrm{w})$, 1350 (w), 1170 (s), 1120 (s), $1090(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.13$ (3 H, d, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.48-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \beta), 1.88(1 \mathrm{H}, \mathrm{ddd}, J=18.3$, $11.5,1.4 \mathrm{~Hz}, \mathrm{H} 2 \beta)$, 2.06-2.45 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}, \mathrm{H} 2 \alpha, \mathrm{H} 3 \alpha, \mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha$, $\mathrm{H} 5 \beta$), $6.29\left(1 \mathrm{H}\right.$, ddd, $\left.J=24.8,16.8,1.1 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.71(1 \mathrm{H}$, ddd, J $\left.=19.4,16.8,8.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.40-7.75\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 338 $\left(\mathrm{M}^{+}, 1\right), 203(20), 202(100), 201(20), 183(10), 155(8)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 74.5 ; \mathrm{H}, 6.8 ; \mathrm{P}, 9.2$. Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 6.9 ; \mathrm{P}, 9.5$.

From the phosphine oxide ($Z / E 95 ; 5$) ($452 \mathrm{mg}, 1.76 \mathrm{mmol}$) and the enone ($163 \mathrm{mg}, 1.98 \mathrm{mmol}$) after flash chromatography with $90: 10$ ethyl acetate-light petroleum was obtained ($1^{\prime} R S, 2^{\prime} E, 3 S R$)-3-[3'(diphenyl-phosphinoyl)- 1 '-methylprop- 2^{\prime}-enyl]cyclopentanone (56) as a colorless viscous oil ($676 \mathrm{mg}, 81 \%$) containing 5% of the diastereomer 55: IR (neat) $\nu_{\text {max }} 2960(\mathrm{~s}), 1730(\mathrm{~s}), 1620(\mathrm{~m}), 1440(\mathrm{~s}), 1400(\mathrm{~m}), 1380(\mathrm{~m})$, 1240 (s), 1180 (s), 1040 (m), $1000(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.15$ ($3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 1.48-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \beta), 1.84(1 \mathrm{H}, \mathrm{ddd}, J=18.4,11.0$, $1.3 \mathrm{~Hz}, \mathrm{H} 2 \beta$), $2.05-2.35$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 3 \alpha, \mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha, \mathrm{H} 5 \beta$), 2.36-2.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$) , $6.30\left(1 \mathrm{H}, \mathrm{ddd}, J=24.6,16.8,1.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$, $6.68\left(1 \mathrm{H}, \mathrm{ddd}, J=19.4,16.8,8.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.45-7.74\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 338 ($\mathrm{M}^{+}, 2$), 256 (30), 255 (15), 203 (17), 202 (100), 201 (20), 183 (8); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P} 338.1435$, found 338.1451.
(ii) Diethyl But-2-enylphosphonate (16). The phosphonate (E / \boldsymbol{Z} $78: 22)(576 \mathrm{mg}, 3.0 \mathrm{mmol})$ and the enone ($245 \mathrm{mg}, 3.0 \mathrm{mmol}$) at -70 ${ }^{\circ} \mathrm{C}$ after flash chromatography with $85: 15$ ethyl acetate-light petroleum gave a $77: 23$ mixture of the ($1^{\prime} R S, 2^{\prime} E, 3 R S$) and ($1^{\prime} R S, 2^{\prime} E, 3 S R$) diastereomers 57 and 58 of $3-\left[3^{\prime}\right.$-(diethylphosphonoyl)- $I^{\prime}-$ methylbut- 2^{\prime} enyl]cyclopentanone as a colorless oil ($664 \mathrm{mg}, 81 \%$), bp $190-200^{\circ} \mathrm{C}$ (0.5 mm ; (Kugelrohr): IR (neat) $\nu_{\max } 2980$ (s), 1740 (s), 1630 (m), 1450 (w), 1400 (m), 1370 (w), 1250 (s), 1160 (s), 1020 (s), $960(\mathrm{~s}), 840(\mathrm{~m})$, $720(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 1.11(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, CH_{3}), $1.34\left(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.48-1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \beta), 1.875$ $(1 \mathrm{H}, \mathrm{ddd}, J=18.3,10.8,1.5 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.05-2.45,6 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 3 \alpha$, $\mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha, \mathrm{H} 5 \beta, \mathrm{H}^{\prime}$), 4.02-4.13 (4 H, m, CH_{2}), $5.69(1 \mathrm{H}, \mathrm{ddd}, J=$ $20.5,17.2,1.2 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 6.71 (1 H , ddd, $J=22.0,17.2,8.25 \mathrm{~Hz} \mathrm{H} 2^{\prime}$); MS $m / e 274\left(\mathrm{M}^{+}, 4\right), 259(4), 246(14), 193$ (13), 192 (100), 191 (14), 178 (15), 164 (26); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P} 274.13348$ found 274.1336.

The phosphonate ($Z / E 87: 13$) ($484 \mathrm{mg}, 2.52 \mathrm{mmol}$) and the enone ($227 \mathrm{mg}, 2.77 \mathrm{mmol}$) after flash chromatography with $85: 15$ ethyl ace-tate-light petroleum gave a 87:13 mixture of the diastereomers 58 and 57 of the above product as a colorless oil ($510 \mathrm{mg}, 74 \%$), bp $190-200^{\circ} \mathrm{C}$ (0.5 mm ; Kugelrohr): IR (neat) $\nu_{\text {max }} 2980$ (s), 1740 (s), 1630 (m), 1460 (m), 1400 (m), 1240 (s), $1160(\mathrm{~m}), 1030(\mathrm{~s}), 960(\mathrm{~s}), 830(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.33(6 \mathrm{H}, \mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.50-1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \beta), 1.85(1 \mathrm{H}, \mathrm{ddd}, J=18.6$, $11.1,1.4 \mathrm{~Hz}, \mathrm{H} 2 \beta), 2.07-2.36(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \alpha, \mathrm{H} 3 \alpha, \mathrm{H} 4 \alpha, \mathrm{H} 5 \alpha, \mathrm{H} 5 \beta$, $\left.\mathrm{Hl}^{\prime}\right), 4.02-4.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.67(1 \mathrm{H}, \mathrm{ddd}, J=20.4,17.3,1.3 \mathrm{~Hz}$, H^{\prime}), 6.68 (1 H , dddd, $J=22.0,17.3,8.0 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$); MS $m / e 274$ (M^{+}, 6), 246 (13), 193 (12), 192 (100), 191 (17), 178 (20), 164 (19); HRMS caled for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{P} 274.1334$, found 274.1332

Cyclohex-2-enone with But-2-enyldiphenylphosphine Oxide (15). The phosphine oxide ($468 \mathrm{mg}, 1.83 \mathrm{mmol}$) with the enone ($195 \mathrm{mg}, 2.03$ mmol) gave after flash chromatography with 80:20 ethyl acetate-light petroleum ether a $1: 1$ mixture of two diasteromers of $3-\left[l^{\prime}\right.$-methyl-3' (diphenylphosphinoyl)prop-2'-enyl]cyclohexanone (59) as a colorless oil ($470 \mathrm{mg}, 73 \%$). Similar results were obtained when the carbanion was generated at $-40^{\circ} \mathrm{C}$, treated with the enone at $-30^{\circ} \mathrm{C}$, and quenched at $-10^{\circ} \mathrm{C}$: IR (neat) $\nu_{\text {max }} 2950(\mathrm{~s}), 1710$ (s), 1440 (s), 1320 (m), 1230 (m), 1190 (s), 1130 (s), 1110 (s), 1080 (w), 1000 (m), 760 (s), 740 (s), $700(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.09\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.5-2.5(9 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Hl}^{\prime}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 1\right), 6.26$ ($1 \mathrm{H}, \mathrm{ddd}, J=24.5,16.8,1.1$ $\mathrm{Hz}, \mathrm{H}^{\prime}$), 6.73 (1 H , ddd, $J=19.6,7.6 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$), $6.4-6.8$ ($10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS $m / e 352\left(\mathrm{M}^{+}, 4\right), 257(20), 256(80), 255(10), 203(200)$, 202 (100), 201 (30), 183 (10), 155 (9). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}$, 75.0; H, 7.1. Found: C, 74.6; H, 7.5.

Addition of the enone ($162 \mathrm{mg}, 1.68 \mathrm{mmol}$) in THF (5 mL) containing anhydrous lithium bromide ($162 \mathrm{mg}, 1.82 \mathrm{mmol}$) to the lithiated phosphine oxide (from the phosphine oxide; $411 \mathrm{mg}, 1.61 \mathrm{mmol}$) at -70 ${ }^{\circ} \mathrm{C}$ gave the product $59(480 \mathrm{mg}, 85 \%)$.

Cyclohept-2-enone with But-2-enyldiphenylphosphine Oxide (15). The crude product obtained from the phosphine oxide ($472 \mathrm{mg}, 1.84 \mathrm{mmol}$) and cyclohept-2-enone ($233 \mathrm{mg}, 2.03 \mathrm{mmol}$) was submitted to flash chromatography with 40:60 ethyl acetate-light petroleum ether to give first an 80:20 mixture of diastereomers of the carbonyl addition product 1-[1'-(diphenylphosphinoyl)but-2'-enyl]cyclohept-2-en-I-ol (62; 280 mg , 42%) as a crystalline solid, $\mathrm{mp} 140-146^{\circ} \mathrm{C}$; the isomers could not be separated by recrystallization or HPLC: IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3340$ (s), 2920 (s), 1440 (s), 1180 (m), 1160 (s), 1110 (s), $1090(\mathrm{~m}), 980(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 1.45\left(3 \mathrm{H}, \mathrm{ddd}, J=6.75,5.2,1.73 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.53-2.70(8 \mathrm{H}, \mathrm{m}), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J=10.6,9.4 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 5.08(1 \mathrm{H}$, ddd, $J=12.1,7.26,5.06 \mathrm{~Hz}, \mathrm{H} 3), 5.36(1 \mathrm{H}, \mathrm{ddq}, J=15.4,6.3,4.5 \mathrm{~Hz}$, H3), 5.53 (1 H , dddq, $J=15.5,10.6,5.1,1.51 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 5.61 (1 H , ddd, $J=12.1,1.5,1.4 \mathrm{~Hz}, \mathrm{H} 2), 7.36-7.91\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 366 $\left(\mathrm{M}^{+},<1\right), 348(6), 257(25), 256(100), 218$ (18), 229 (9), 202 (29), 201 (32), 147 (10), 130 (12); MS (CI) $m / e 367(\mathrm{P}+1$); HRMS calcd for [$\left.\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}-\mathrm{H}_{2} \mathrm{O}\right]$ 348.1643, found 348.1648

A mixture of diastereomers of the carbonyl and conjugate addition products 61 and 60 was eluted next as a colorless viscous oil (310 mg ,

46\%). This was submitted to HPLC (ethyl acetate, Whatman Partisil 10 M 20 column, flow rate $13 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 700 \mathrm{psi}$) to give one diastereomer of (E)-1-[3'-(diphenylphosphinoyl)-1'-methylprop-2'-enyl]cyclohept-2-en-1-ol (60) as a colorless oil: IR (neat) $\nu_{\text {max }} 3358$ (s), 2930 (s), 2860 (m), 1710 (m), $1640(\mathrm{w}), 1438(\mathrm{~s}), 1174(\mathrm{~s}), 1121(\mathrm{~m}), 1101(\mathrm{~m}), 998$ (m), $750(\mathrm{~s}), 722(\mathrm{~s}), 695(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.132(3 \mathrm{H}, \mathrm{d}, J=6.84$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.58-2.70(8 \mathrm{H}, \mathrm{m}), 5.58(1 \mathrm{H}, \mathrm{dm}, J=12.0 \mathrm{~Hz}, \mathrm{H} 2), 5.764$ (1 H, ddd, $J=12.0,5.9,5.9 \mathrm{~Hz}, \mathrm{H} 3$), $6.31(1 \mathrm{H}$, ddd, $J=24.6,17.1$, $1.0 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $6.85\left(1 \mathrm{H}, \mathrm{ddd}, J=20.0,17.1,8.0 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 7.43-7.78$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 367 (4), 366 ($\mathrm{M}^{+}, 4$), 271 (30), 256 (35), 217 (20), 215 (19), 202 (100), 201 (93), 183 (14); HRMS calcd for $\mathrm{C}_{23}{ }^{-}$ $\mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P} 366.1748$, found 366.1750 .
The second isomer of 61, a colorless viscous oil, was eluted next: IR (neat) $\nu_{\text {max }} 3348$ (s), 2930 (s), $2860(\mathrm{~m}), 1710(\mathrm{~m}), 1640(\mathrm{w}), 1442$ (s), $1180(\mathrm{~s}), 1119(\mathrm{~m}), 1103(\mathrm{~m}), 995(\mathrm{~m}), 750(\mathrm{~s}), 722(\mathrm{~s}), 695(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.118\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.55-2.70(8 \mathrm{H}, \mathrm{m}), 5.535$ ($1 \mathrm{H}, \mathrm{dm}, J=12.2 \mathrm{~Hz}, \mathrm{H} 2$), $5.746(1 \mathrm{H}$, ddd, $J=12.2,5.4,5.9 \mathrm{~Hz}, \mathrm{H} 3$), 6.251 (1 H , ddd, $\left.J=24.7,17.3,1.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.84(1 \mathrm{H}, \mathrm{ddd}, J=20.0$, $17.3,7.8 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $7.43-7.78$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); MS m/e 367 (4), 366 ($\mathrm{M}^{+}, 4$), 348 (5), 271 (30), 256 (35), 217 (20), 215 (19), 202 (100), 201 (93), 183 (14); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P} 366.1748$, found 366.1750.

The next fraction eluted was one diastereomer of $(E)-3-\left[3^{\prime}\right.$-(di-phenylphosphinoyl)-1'-methylprop-2'-enyl]cycloheptanone (60), a colorless viscous oil: IR (neat) $\nu_{\text {max }} 2930$ (s), $2860(\mathrm{~m}), 1699$ (s), 1620 (w), 1438 (s), 1184 (s), 1121 (s), 1104 (m), 1000 (m), 740 (s), 721 (s), 696 (s), $751(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.085\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25-2.50$ $(12 \mathrm{H}, \mathrm{m}), 6.23\left(1 \mathrm{H}\right.$, ddd, $\left.J=24.4,17.2,1 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 6.685$ (1 H , ddd, $\left.J=19.5,17.2,7.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.38-7.74\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; MS m/e 366 ($\mathrm{M}^{+}, 9$), 256 (95), 227 (100), 215 (12), 203 (25), 202 (100), 183 (14), 165 (13), 155 (12); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P} 366.1748$, found 366.1750 .

The most polar fraction was the second isomer of 60: IR (neat) $\nu_{\text {max }}$ 2930 (s), 2860 (m), 1697 (s), 1620 (w), 1442 (s), 1184 (s), 1120 (s), 1103 (m), 1000 (m), 740 (s), 721 (s), 693 (s), 751 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.084$ ($3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.25-2.50 ($12 \mathrm{H}, \mathrm{m}$), $6.24(1 \mathrm{H}, \mathrm{ddd}, J=$ $\left.24.6,17.1,1.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$, 6.71 (1 H , ddd, $J=19.8,17.1,7.1 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$), 7.38-7.74 (10 H, m, C ${ }_{6} \mathrm{H}_{5}$); MS m/e $366\left(\mathrm{M}^{+}, 9\right), 311$ (7), 256 (95), 241 (9), 227 (100), 215 (12), 203 (25), 202 (100), 183 (14), 165 (13), 155 (12); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P} 366.1748$, found 366.1750 .

Registry No. (E)-1, 85250-56-2; (Z)-1, 91789-07-0; (E)-4, 56561-12-7; (Z)-4, 73925-25-4; (E)-5, 112173-35-0; (Z)-5, 114678-51-2; (E)-6, 86838-05-3; (Z)-6, 97964-94-8; (E)-7, 114678-52-3; (Z)-7, 114678-53-4; 8, 42185-88-6; 9, 114678-55-6; 10, 78012-73-4; 11, 19093-37-9; (E)-12, 114678-58-9; (Z)-12, 114678-59-0; (E)-13, 114678-61-4; (Z)-13, 114678-62-5; (E)-14, 114678-63-6; (Z)-14, 114678-64-7; (E)-15, 17668-60-9; $(Z)-15,58322-08-0 ;(E)-16,26327-86-6 ;(Z)-16,26327-$ 87-7; 17, 73448-15-4; 18, 497-23-4; 19, 930-30-3; 20, 35298-48-7; 21, 2758-18-1; 22, 930-68-7; 23, 1121-66-0; 24, 826-56-2; 25, 110770-73-5; 26, 110716-82-0; 27, 114678-65-8; 28, 114718-08-0; 29, 114718-09-1; 30, 114718-11-5; 31, 114718-12-6; (1' $\left.R S, 2^{\prime} E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)$-32, 114678-67-0; (1'RS, $2^{\prime} E, 3 S R, R_{S} S_{\mathrm{S}}$)-32, 114718-13-7; 33, 114678-68-1; 34, 114718 -14-8; 35, 114678-69-2; 36, 114718-15-9; 37, 114718-16-0; ($\left.1^{\prime} R S, 2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)-38, \quad 114678-70-5 ; \quad\left(1^{\prime} R S, 2^{\prime} E, 3 S R, S_{\mathrm{S}} R_{\mathrm{S}}\right)-38$, 114718-17-1; ($2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}$)-39, 114678-71-6; (2' $\left.E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)-39$, 114678-72-7; 40, 114678-73-8; (1'RS,2' $\left.E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)$-41, 114678-74-9; ($1^{\prime} R S, 2^{\prime} E, 3 S R, S_{\mathrm{S}} S_{\mathrm{S}}$)-41, $\quad 114718-18-2 ; \quad 42$, $114691-80-4$; ($2^{\prime} E, 4 R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-43, 114718-19-3; (2'E,4RS, $R_{\mathrm{S}} S_{\mathrm{S}}$)-43, 114718-20-6; (1RS, $\left.1^{\prime} R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)$-44, 114678-75-0; (1RS, $1^{\prime} S R, R_{\mathrm{S}} S_{\mathrm{S}}$)-44, 114718-21-7; ($1 R S, 1^{\prime} R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-44, 114718-22-8; (1RS, $1^{\prime} S R, S_{\mathrm{S}} R_{\mathrm{S}}$)-44, 114718-23-9; 45, $114718-24-0 ;$ 46, 114678-76-1; ($\left.1 R S, 1^{\prime} R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)$-47, 114678-77-2; ($\left.1 R S, 1^{\prime} S R, R_{\mathrm{S}} S_{\mathrm{S}}\right)$-47, 114718-25-1; (1RS, $\left.1^{\prime} R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)$-47, 114718-26-2; ($\left.1 R S, 1^{\prime} S R, S_{\mathrm{S}} R_{\mathrm{S}}\right)-47,114718-27-3 ;\left(2^{\prime} E, 3 R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)-48,114678-79-4 ;$ ($2^{\prime} E, 3 R S, S_{\mathrm{S}} R_{\mathrm{S}}$)-48, 114678-97-6; (1RS, $1^{\prime} R S, R_{\mathrm{S}} S_{\mathrm{S}}$)-49, 114678-78-3; ($\left.1 R S, 1^{\prime} S R, R_{\mathrm{S}} S_{\mathrm{S}}\right)$-49, 114718-28-4; (1RS, $\left.1^{\prime} R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)$-49, 114718-29-5; (1RS, $\left.1^{\prime} S R, S_{\mathrm{S}} R_{\mathrm{S}}\right)$-49, 114718-30-8; ($\left.1 R S, 2^{\prime} E, S_{\mathrm{S}} R_{\mathbf{S}}\right)-50,114678-80-7$; ($\left.1 R S, 2^{\prime} E, R_{\mathrm{S}} S_{\mathrm{S}}\right)-50,114678-81-8 ;\left(1 R S, 1^{\prime} R S, R_{\mathrm{S}} S_{\mathrm{S}}\right)-51,114678-82-9$; ($\left.1 R S, 1^{\prime} S R, R_{S} S_{\mathrm{S}}\right)$-51, 114718-31-9; (1RS, $\left.1^{\prime} R S, S_{\mathrm{S}} R_{\mathrm{S}}\right)-51,114718-32-0 ;$ ($1 R S, 1^{\prime} S R, S_{\mathrm{S}} R_{\mathrm{S}}$)-51, 114718-33-1; 52, 114678-83-0; 53, 114678-84-1; 54, 114718-34-2; 55, 114678-85-2; 56, 114678-86-3; 57, 114678-87-4; 58, 114678-88-5; ($1^{\prime} R S, 2^{\prime} E, 3 R S$)-59, 114678-89-6; ($\left.1^{\prime} R S, 2^{\prime} E, 3 S R\right)-59$, 114678-90-9; ($\left.1^{\prime} R S, 2^{\prime} E, 3 S R\right)-60,114678-95-4 ;\left(1^{\prime} R S, 2^{\prime} E, 3 R S\right)-60$, 114678-96-5; ($\left.1 R S, 1^{\prime} S R, 2^{\prime} E\right)$-61, 114678-94-3; (1RS, $\left.1^{\prime} R S, 2^{\prime} E\right)$-61, 114678-93-2; ($\left.1 R S, 1^{\prime} R S, 2^{\prime} E\right)-62,114678-91-0 ;\left(1 R S, 1^{\prime} S R, 2^{\prime} E\right)-62$ 114678-92-1; 63, 114678-66-9; 65, 114718-10-4; (E)-1-(methylthio) oct-2-ene, 91944-69-3; (E)-1-bromobut-2-ene, 29576-14-5; (Z)-1-bromobut-2-ene, 39616-19-8; (E)-1-(phenylthio)but-2-ene, 36195-56-9; (Z)-1-(phenylthio)but-2-ene, 36195-55-8; sodium 2-methylpropane-2 thiolate, 29364-29-2; lithium diphenylphosphide, 4541-02-0; (E)-1-(1,1dimethylethylthio) but-2-ene, 107183-90-4; (Z)-1-(1,1-dimethylethyl-
thio) but-2-ene, 107183-91-5; 1-(phenylthio)-3-methylbut-2-ene, 13640-71-6; 1-bromo-3-methylbut-2-ene, 870-63-3; 1-(1,1-dimethylethyl)-3-methylbut-2-ene, 114678-54-5; 3-(phenylthio)pent-4-en-1-ol, 114678-56-7; 5-(phenylthio)pent-3-en-1-ol, 114678-57-8; tert-butyldimethylsilyl chloride, 18162-48-6; 5-(phenylthio) pent-3-en-1-ol tert-butyldimethylsilyl ether, 114678-60-3; oct-1-en-3-ol, 3391-86-4; chlorodiphenylphosphine, 1079-66-9; (E)-1-bromooct-2-ene, 53645-21-9; (Z)-1-bromooct-2-ene, 56318-83-3; but-3-en-2-ol, 598-32-3; triethyl phosphite, 122-52-1; diethyl
phosphite, 762-04-9; tributylphosphine, 998-40-3.
Supplementary Material Available: Commentary on determination of relative configuration and preferred conformers of compounds $\mathbf{2 5}, \mathbf{2 6}, \mathbf{3 0}$, and 31, with figure, and table of ${ }^{1} \mathrm{H}$ NMR data for compounds $25,26,53$, and 54 (5 pages). Ordering information is given on any current masthead page.

Aprotic Conjugate Addition of Allyllithium Reagents Bearing Polar Groups to Cyclic Enones. 2. 2-Alkyl-, 2,3-Dialkyl-, and 1,3-Dialkylallyl Systems

Richard K. Haynes,,${ }^{, \dagger}$ Andrew G. Katsifis, ${ }^{\dagger}$ Simone C. Vonwiller, ${ }^{\dagger}$ and Trevor W. Hambley ${ }^{\ddagger}$
Contribution from the Departments of Organic Chemistry and Inorganic Chemistry, The University of Sydney, Sydney, 2006, New South Wales, Australia. Received September 11, 1987

Abstract

As an extension of the work carried out on the conjugate addition reactions of lithiated 3-alkylallylic sulfoxides, phosphine oxides, and phosphonates to cyclic enones, the effects of placing methyl groups at C2, at C2 and C3, and at C1 and C 3 of the allyl system and of placing the allyl system within a five-membered ring are examined. From the lithiated 2 -methallyl and (E)-2-methylbut-2-enyl ("tiglyl") sulfoxides, mixtures of diastereomeric (E) - and (Z)-vinylic sulfoxides resulting from conjugate addition to cyclopentenone are obtained. The proportion of Z diastereomers formed increases with the reaction temperature. In contrast, lithiated (Z)-2-methylbut-2-enyl ("angelyl") sulfoxides and the tiglyl and angelyl phosphine oxides undergo highly diastereoselective conjugate addition to give (E)-vinylic products. Lithiated 1,3-dimethylbut-2-enyl sulfoxides undergo stereoconvergent reactions in that the starting sulfoxides, as mixtures of diastereomers, are converted into vinylic sulfoxides, which are obtained as single diastereomers. The individual diastereomers of tert-butyl cyclopentenyl sulfoxide upon lithiation undergo conjugate addition with cyclopentenone to give the same vinylic sulfoxide. A sulfenate ester also results from carbonyl addition. The structures of the diastereomers have been established by high-field ${ }^{1} \mathrm{H}$ NMR spectroscopy, by chemical correlation, and in two cases by X-ray crystallographic studies. The destabilizing influence of the methyl groups on the normal "trans-fused chair-chair"-like extended transition state causing access to "cis-fused boat-boat"-like, "cis-fused chair-chair"-like, and "trans-fused boat-chair"-like transition states involving planar lithiated reagents provides a rationale for the results. The temperature dependence of some of these reactions, and simple quenching experiments in which the individual lithiated diastereomers of the cyclopentenyl sulfoxide are converted into a single diastereomer, provide evidence for planar lithiated sulfoxides.

In the preceding paper, we described how lithiated (E) - and (Z)-allylic sulfoxides, phosphine oxides, and phosphonates bearing alkyl groups at C3 undergo highly stereoselective aprotic conjugate addition to cyclic enones to give syn- and anti-vinylic sulfoxides, phosphine oxides, and phosphonates. We proposed an extended transition-state model of the reactions that is described as "trans-decalyl"- or "trans-fused chair-chair"-like. ${ }^{1}$ The model has the advantage that it is conceptually simple, easily visualized, and consistently accounts for the regiochemical and stereochemical features of the reactions of the foregoing substrates. Central to the proposition is the assumption that the lithiated reagents are planar, with the lithium bound to the oxygen atom. ${ }^{1}$

A natural extension of the work is to examine allylic systems more encumbered than those described hitherto. It is of synthetic benefit to establish how tolerant these reactions are of substitution at C 1 and C 2 in the allylic system and to delineate the steric limitations of these reactions in general. Further, the effect of such substitution will provide a test of the validity of the extended TS model. If this is a reasonable representation of the TS, then the reaction should be sensitive to the presence of substituents, attached to either the allyl system or the cyclic enone, that engender steric interactions between the reactants in the TS. The interactions may be such that either other extended transition

[^7]states become energetically accessible to the reactants or, alternatively, flowover into the carbonyl addition manifold takes place. ${ }^{2}$ For conjugate addition, the intercession of other extended transition states will reflect in the formation of vinylic products that possess configurations different from those of the syn and anti products described above.

We chose to investigate the reactions of the lithiated reagents derived from 2-methallyl sulfoxides 1 and $2,(E)$ - ("tiglyl") and (Z)-2-methylbut-2-enyl ("angelyl") sulfoxides 3 and 4 , and phosphine oxides 5 and 6 , all of which possess a 2 -methyl group capable of destabilizing a trans-fused chair-chair-like TS (cf. Figure 1). Also considered were the sulfoxides 7 and 8 , as 1,3-disubstitution is also anticipated to influence the manner in which the lithiated reagents react. These compounds, however, are of particular interest in that they possess a stereogenic center at C 1 , and thus the outcome of the reactions of the individual lithiated diastereomers of each should provide insight into the structures of the lithiated reagents in general. This applies also to the cyclopentenyl sulfoxide 9 . In addition, the allyl systems within both compound 9 and the phosphine oxide 10 are constrained to react so as to generate (E)-vinylic sulfoxides and

[^8]
[^0]: (24) Roundhill, D. M.; Atherton, S. J.; Shen, Z.-P. J. Am. Chem. Soc. 1987, 109, 6076.
 (25) Che, C. M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, i05, 4604-4607.
 (26) Che, C. M.; Mak, T. C. W.; Gray, H. B. Inorg. Chem. 1984, 23, 4386-4388.
 (27) Kurmoo, M.; Clark, R. J. H. Inorg. Chem. 1985, 24, 4420-4425. (28) Alexander, K. A.; Bryan, S. A.; Fronczek, F. R.; Fultz, W. C.; Rheingold, A. L.; Roundhill, D. M.; Stein, P.; Watkins, S. F. Inorg. Chem. 1985, 24, 2803-2808.

[^1]: (1) For reviews and leading references see: Gröbel, B. T.; Seebach, D. Synthesis 1977, 357. Bürstinghaus, R.; Seebach, D. Chem. Ber. 1977, 110, 841. Smith, R. A. J.; Lal, A. R. Aust. J. Chem. 1979, 32, 353. Hünig, S.; Wehner, G. Chem. Ber. 1980, $/ 13,302,324$. Wilson, S. R.; Misra, R. N.; Georgiadis, G. M. J. Org. Chem. 1980, 45, 2460. Krief, A. Tetrahedron 1980, 36, 2566-2581. Mulzer, J.; Brüntrup, G.; Hartz, G.; Kühl, U.; Blaschek, U.; Böhrer, G. Chem. Ber. 1981, 114, 3701. Kyler, K. S.; Netzel, M. A.; Arseniyadis, S.; Watt., D. S. J. Org. Chem. 1983, 48, 383. Albright, J. D. Tetrahedron 1983, 39, 3211-3219. Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. (N.Y.) 1984, 31, 42-45, 282-295. Berrada, S.; Metzner, P.; Rakotonirina, R. Bull. Soc. Chim. Fr. 1985, 881. Cohen, T.; Yu, L. C. J. Org. Chem. 1985, 50, 3266. Liu, H.-J.; Wynn, H. Can. J. Chem. 1986, 64, 649. Ogura, K.; Yahata, N.; Minoguchi, M.; Ohtsuki, K.; Takahashi, K.; Iida, H. J. Org. Chem. 1986, 5l, 508.

[^2]: (2) Brown, C. A.; Yamaichi, A. J. Chem. Soc., Chem. Commun. 1979, 100. Luchetti, J.; Dumont, W.; Krief, A. Tetrahedron Lett. 1979, 2695. Lucchetti, J.; Krief, A. J. Organomet. Chem. 1980, 194, C49. El-Bouz, M.; Wartski, L. Tetrahedron Lett. 1980, 21, 2897. Mpango, G. P.; Mahalanabis, K. K.; Mahdavi-Damghani, Z.; Snieckus, V. Tetrahedron Lett. 1980, 21, 4823. Colombo, L.; Gennari, C.; Resnati, G.; Scolastico, C. Synthesis 1981, 74. Colombo, L.; Gennari, C.; Resnati, G.; Scolastico, C. J. Chem. Soc., Perkin Trans. 1 1981, 1284. Hirama, M. Tetrahedron Lett. 1981, 22, 1905. Brown, C. A.; Chapa, O.; Yamaichi, A. Heterocycles 1982, 18, 187. Wartski, L.; El Bouz, M. Tetrahedron 1982, 38, 3285. Hatzigrigoriou, E.; Wartski, L. Synth. Commun. 1983, 13, 319. Chung, S. K.; Dunn, L. B. J. Org. Chem. 1984, 49, 935. Zervos, M.; Wartski, L. Tetrahedron Lett. 1984, 25, 4641. Ager, D. J.; East, M. B. J. Org. Chem. 1986, 51, 3983. De Lombaert, S.; Nemery, I.; Roekens, B.; Carretero, J. C.; Kimmel, T.; Ghosez, L. Tetrahedron Lett. 1986, 27, 5099.

[^3]: (13) Haynes, R. K.; Holden, M. Aust. J. Chem. 1982, 35, 517.
 (14) The nomenclature of Masamune is used here to designate the relative disposition of substituents about the newly created adjacent chiral centers at Cl^{\prime} and C3. ${ }^{15}$ The syn diastereomer (for example, compound 25) is taken to be that where C2 and the alkyl group (R) can be visualized as projecting toward the viewer, as in i. In the anti diastereomer (for example, compound

 26), the alkyl group projects away, as in ii. C2 is chosen as one reference as it was originally within the enone system of the cyclopentenone. This has as analogy the use of the newly formed hydroxyl group in an aldol reaction as a reference in the syn-anti description of the stereostructures of the products. ${ }^{15}$ The usage here is somewhat different from that usually employed for a description of the stereostructures of Michael adducts, ${ }^{4}$ as in our case the "longest chain" commences at Cl and passes through $\mathrm{C} 5, \mathrm{C}$, and C 3 of the cyclopentanone, and thence through $\mathrm{Cl}^{\prime}, \mathrm{C2}^{\prime}$, and C^{\prime} of the side chain.

[^4]: (15) Masamune, S.; Ali, S. A.; Snitman, D. L.; Garvey, D. S. Angew Chem., Int. Ed. Engl. 1980, 19, 557. Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: Orlando, FL, 1984; Vol. 3, Part B, p 113.
 (16) Binns, M. R.; Haynes, R. K.; Katsifis, A. G.; Engelhardt, L. M.; White, A. H. Aust. J. Chem. 1987, 40, 291. A summary of the NMR method and the preferred conformers of products $25,26,30$, and 31 as derived from the NMR data are given in the supplementary material.

[^5]: (17) (Z)-Allylic phenyl sulfoxides readily isomerize at room temperature via the sulfoxide-sulfenate rearrangement to the E isomer. Consequently, it was not possible to measure with any degree of precision the composition of sulfoxide mixtures initially containing predominant amounts of the sulfoxide

[^6]: (41) Marshall, J. A.; Fanta, W. I. J. Org. Chem. 1964, 29, 2501.
 (42) Binns, M. R.; Haynes, R. K.; Lambert, D. E.; Schober, P. A.; Turner, S. G. Aust. J. Chem. 1987, 40, 281.
 (43) Hoffmann, R. W.; Goldmann, S.; Maak, N.; Gerlach, R.; Frickel, F.; Steinbach, G. Chem. Ber. 1980, 113, 819.
 (44) Young, W. G.; Lane, J. F. J. Am. Chem. Soc. 1938, 60, 847.
 (45) Cope, A. C.; Morrison, D. E.; Field, L. J. Am. Chem. Soc. 1950, 72, 59.
 (46) Antonjuk, D. J.; Ridley, D. D.; Smal, M. A. Aust. J. Chem. 1980, 33, 2635.
 (47) Parham, W. E.; Groen, S. H. J. Org. Chem. 1966, 31, 1694.
 (48) Voyle, M.; Kyler, K. S.; Arseniyadis, S.; Dunlap, N. K.; Watt, D. S. J. Org. Chem. 1983, 48, 470.
 (49) Lythgoe, B.; Moran, T. A.; Nambudiry, M. E. N.; Ruston, S. J. Chem. Soc., Perkin Trans. I 1976, 2386.
 (50) Birch, S. F.; McAllan, D. T. J. Chem. Soc. 1951, 2556.
 (51) Worms, K. H.; Schmidt-Dunker, M. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds.; Wiley: New York, 1976; Vol. 7, p 136, and references cited therein.

[^7]: ${ }^{\dagger}$ Department of Organic Chemistry.
 ${ }^{\ddagger}$ Department of Inorganic Chemistry.

[^8]: (1) Binns, M. R.; Haynes, R. K.; Katsifis, A. G.; Schober, P. A.; Vonwiller, S. C., preceding paper in this issue.
 (2) This has already been noted in reactions involving lithiated 3,3-dimethallyl sulfoxides and 3-methylcyclopent-2-enone. ${ }^{1}$

